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Introduction - context

Detection technique at low Signal to noise ratio (SNR)

Atmospheric pollution control with Adaptive Multiple Importance
Sampling (AMIS) [Rajaona et al., 2015]

Completion to Source Term Estimate techniques in weak signal
cases
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Introduction - detection problem
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Change point detection - principle

Use of the knowledge of the signal statistics to detect weak signals
over time

H0 : Xn ∼ f0(xn; θ0)

H1 : Xn ∼ f1(xn; θ1)
(1)

With change-point ν (before H0 is true, after H1 is true) the
hypothesis test relies on the following likelihoods:

H0 : p(x1, . . . , xn) =
n∏

k=1

f0(xk |θ0)

H1 : p(x1, . . . , xn; ν) =
ν∏

k=1

f0(xk |θ0)
n∏

l=ν+1

f1(xl |θ1).

(2)
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Change-point detection - GLRT

We can write the likelihood ratio:

Λνn =
n∏

k=ν+1

f1(xk ; θ1)

f0(xk ; θ0)
. (3)

Because ν is unknown →
Generalized Likelihood Ratio Test(GLRT )[Tartakovsky et al., 2014]

Vn = max
0≤ν<n

n∏
i=ν+1

Li , (4)

with:

Li =
f1(xi ; θ1)

f0(xi ; θ0)
. (5)

PAGE 6 / 16



Change-point detection - CUSUM

CUSUM for CUmulative SUM [Page, 1954] is an effective online
solution

gn = max(0, gn−1 + log(Ln)) (6)

detection is triggered by comparing gn to a threshold

Figure: Example of CUSUM at low SNR (-15dB): ’nu’ shows the real value of ν,
’td’ is time of detection and ’tc’ the estimate of the change-point time.
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Multivariate detection

Use of a network of sensors to detect events

Common ways to deal with a network of sensors are Max-CUSUM
and Sum-CUSUM [Mei, 2010]:

TMC (n) = max
l

(Wl ,n) (7)

TSC (n) =
∑
l

Wl ,n (8)

these are the most effective either when only one of the sensors or all
sensors are affected by the signal
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Multivariate detection - adapted solutions

Censoring [Mei, 2010]

TcSC (n) =
L∑
l

Wl ,n > c (9)

Weighting censored

TwcSC (n) =
L∑
l

(n − νl)×Wl ,n > α×max
l

(Wl ,n) (10)
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Multivariate detection - simple example

Detection of a change of mean value which randomly hits L out of
10 sensors with gaussian noise SNR = -20dB while the average
length to false alarm (ARL2FA) = 10,000 time samples

L 1 3 5 8 10

SC 1544 649 481 286 213
MC 902 571 491 454 424

cSC 957 554 486 442 331

wcSC 961 472 456 367 318

Table: Average detection delay in time samples of each method with L sensors
monitoring the change of mean
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Numerical Experiment

Data from [Rajaona et al., 2015] release simulated using the SPRAY
dispersion model [Tinarelli et al., 2013] on an urban area of 1km2

with 20 sensors.

Figure: Sensors positions
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Numerical Experiment

Figure: Case where one of the sensors is a lot more impacted than the others
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Numerical Experiment

Figure: Case where few of the sensors are impacted
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Conclusion

CUSUM derived methods: Robust for detecting low SNR events
with a network of sensors such as small leakages

Weighted and Censored version seems to be a good compromise
when the the number of impacted sensors is unknown

Possibility of monitoring wider areas and more areas as it can
compensate the weakness of cheap sensors and allocate more
efficiently computational resources necessary for the STE method.
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Future work

Tackle the issue of the delay between sensors so that events which are
not simultaneously monitored by the sensors can be detected.

Application to other atmospheric propagation problems and
association to the AMIS STE method to create a complete detection,
location and characterization tool.
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