Development and Evaluation of a Model for Pollutant Dispersion from Elevated Roads

James O'Neill, Jenny Stocker, Martin Seaton, Kate Johnson, Christina Hood, David Carruthers

HARMO 20

14-18 June 2021

Motivation

- Plume disperses freely through road surface
- Vertical concentration distribution: Single Gaussian curve* (with reflections)

- Road surface shielding reduced downward dispersion until off road edge
- Vertical concentration distribution: Two half-Gaussians (with reflections)

Methodology

Gaussian models: $C = \frac{Q}{H}f(z)g(y)$

$$f(z) = f_{-}(z)(1 - H(z - z_p)) + f_{+}(z)H(z - z_p)$$

H – Heaviside step function

Same amplitude – Ensures continuity

$$f_{-}(z) = \alpha \exp\left(\frac{-(z-z_p)^2}{2\sigma_{z-}^2}\right)$$

$$f_{+}(z) = \alpha \exp\left(\frac{-(z-z_p)^2}{2\sigma_{z+}^2}\right)$$

Different standard deviations (spreads)

Conservation of mass:
$$\int_{z=-\infty}^{z=z_p} f_-(z) dz + \int_{z=z_p}^{z=+\infty} f_+(z) dz = 1 \quad \Rightarrow \quad \alpha = \frac{2}{\sqrt{2\pi}(\sigma_{z-} + \sigma_{z+})}$$

$$f(z) = \frac{2}{\sqrt{2\pi}(\sigma_{z-} + \sigma_{z+})} \left[\exp\left(\frac{-(z - z_p)^2}{2\sigma_{z-}^2}\right) \left(1 - H(z - z_p)\right) + \exp\left(\frac{-(z - z_p)^2}{2\sigma_{z+}^2}\right) H(z - z_p) \right]$$

Downward spread (σ_{z-}) limited to 1 m (initial road mixing height) while over road surface

Implementation

New methodology implemented in ADMS – widely used urban dispersion model

v5.0.1

Evaluation: Summary

- Multiple sites used:
 - Two AURN reference monitors next to elevated section of M4, London (UK)
 - Diffusion tube measurements near to elevated M5 section, Birmingham (UK)
 - Limited-duration field measurement campaign near flyover, Antwerp (Belgium)
- Only AURN monitor validation presented here; see Stocker et al. (2020) for others

Birmingham (Google Maps)

Antwerp (Van Poppel et al., 2012)
HARMO 20

CERC London (ESRI)

Evaluation: London site

HS10: Elevated
 M4 only
 nearby major
 road source →

Ideal for validation

HS5: Elevated
 M4 and ground
 level A4 both
 major road
 sources → can
 compare
 relative impact

Evaluation: Model setup

- M4 (6m) and A4 (ground-level) modelled as explicit road sources
- Traffic flows:
 - M4: WebTRIS data (hourly) used to calculate AADT and hourly emission factors
 - A4: DfT traffic data (single 12-hr period). M4 data used to scale to other periods
- Road emissions:
 - Calculated from traffic flow data using EFT v9.0
 - Real-world **NOx adjustments** (Hood et al., 2018)
- Other sources: Volume (10m), emission rates from LAEI*
- Background concentrations: wind-direction-dependent combination of 4 'rural background' AURN monitors
- Met: Heathrow, one year (2019) of hourly data
- GRS Chemistry scheme used
- A4 section modelled as asymmetric street canyon (Hood et al., 2021)

Evaluation: Model setup

- M4 (6m) and A4 (ground-level) modelled as explicit road sources
- Traffic flows:
 - M4: WebTRIS data (hourly) used to calculate AADT and hourly emission factors
 - A4: DfT traffic data (single 12-hr period). M4 data used to scale to other periods
- Road emissions:
 - Calculated from traffic flow data using EFT v9.0
 - Real-world **NOx adjustments** (Hood et al., 2018)
- Other sources: Volume (10m), emission rates from LAEI*
- Background concentrations: wind-direction-dependent combination of 4 'rural background' AURN monitors
- Met: Heathrow, one year (2019) of hourly data
- GRS Chemistry scheme used
- A4 section modelled as asymmetric street canyon (Hood et al., 2021)

Evaluation: HS10 (M4 only) results

NO_2	NMSE	Correlation	Fac2	fb
Flat	0.872	0.496	0.584	0.503
Old	0.387	0.628	0.785	0.130
New	0.360	0.646	0.802	0.026

NO_{χ}	NMSE	Correlation	Fac2	fb
Flat	2.443	0.344	0.362	0.735
Old	1.211	0.515	0.621	0.131
New	1.285	0.557	0.708	-0.076

- Generally better statistics using new approach
- Modelling at elevation vs flat has much larger bearing on accuracy than old vs new approach

Evaluation: HS5 (M4 and A4) results

- NO_X concentrations binned into 10° wind sectors
- Good overall agreement with monitored data
- Source apportionment:
 Significantly larger contribution
 from ground-level A4 than
 elevated M4 (despite ~1/2 the
 emissions) due to flyover having:
 - Increased vertical and horizontal source-receptor distance
 - Increased wind speed with elevation → greater dispersion
 - No plume 'folding' until groundlevel reflections occur

Evaluation: HS5 (M4 and A4) results

- M4 contribution:
 - Min. when wind from monitor towards road
 - Max. when wind aligned with road → plume largely passes over monitor when wind from road to monitor
- A4 contribution:
 - Remains fairly constant, even when wind from monitor to road
 → recirculating cell
 - Confirmed by running model without canyon
- Elevating roads can mitigate canyon effects → lower groundlevel concentrations

- Same model setup used for HS10 site (M4 only), multiple road elevations tested
- Compare near-ground (2m) annual average NOx concs along perpendicular transect

- Same model setup used for HS10 site (M4 only), multiple road elevations tested
- Compare near-ground (2m) annual average NOx concs along perpendicular transect

Local maximum reduces and is further from road as elevation increases

- Same model setup used for HS10 site (M4 only), multiple road elevations tested
- Compare near-ground (2m) annual average NOx concs along perpendicular transect

Local maximum reduces and is further from road as elevation increases

- Same model setup used for HS10 site (M4 only), multiple road elevations tested
- Compare near-ground (2m) annual average NOx concs along perpendicular transect

increasing distance from road

HARMO 20

- When should road elevation be accounted for in the model? Depends on:
 - Elevation
 - Distance from road to receptor(s) of interest
 - Other factors (road geometry, stability etc.)

Distance at which near-ground concentration from elevated road reduces to within 10% of near-ground concentration from ground-level road (for M4 setup)

Still significant impact 0.5km from road for elevations > 8m

Summary

- New method for modelling 'flyover'-type elevated roads which accounts for surface shielding implemented in widely-used ADMS dispersion model
 - ADMS-Urban / ADMS-Roads v5.0.1
- Evaluation against reference monitor data near elevated motorway section demonstrates good model performance
- Elevated roads help reduce nearby near-ground concentrations due to:
 - Increased vertical source-receptor distance
 - Increased wind speeds with height lead to enhanced dispersion
 - Ground-level reflections, which result in plume 'folding', are delayed
 - Can mitigate street canyon recirculation effects
- Benefit of accounting for road elevation in the model depends on road height and horizontal source-receptor distance

Acknowledgements & References

Acknowledgements:

- This work was funded by Highways England under the SBRI Innovate UK 'Developing digital roads and improving air quality' competition
- The authors acknowledge Martine Van Poppel for sharing the dataset associated with the Antwerp field campaign study (not presented)

References

- Hood, C., MacKenzie, I., Stocker, J., Johnson, K., Carruthers, D., Vieno, M. and Doherty, R., 2018: Air quality simulations for London using a coupled regional-to-local modelling system. Atmos. Chem. Phys., 18, 11221-11245
- Hood, C., Stocker, J., Seaton, M., Johnson, K. O'Neill, J., Thorne, L. and Carruthers, D., 2021: Comprehensive evaluation of an advanced street canyon air pollution model. J. Air Waste Manag. Assoc., 71:2, 247-262
- Stocker, J., Johnson, K., Patel, R. and O'Neill, J., 2020: Tool to assess air quality impacts of elevated roads within the Strategic Road Network: Highways England Phase 2 report. Available at: https://highwaysengland.co.uk/industry/innovation/research/research-publications
- Van Poppel, M., Panis, L., Govarts, E., Van Houtte, J. and Maenhaut, W., 2012: A comparative study of traffic related air pollution next to a motorway and a motorway flyover. Atmos. Environ., 60, 132-141

Thank you for listening

Any questions?

james.oneill@cerc.co.uk

