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1. – Introduction

Atmospheric dispersion modelling for emergency response

• Accidental or deliberate releases of NRBC material

• In complex built-up areas like urban or industrial sites

• First responders and decision makers need fast and relatively precise 

estimates of the contaminated and dangerous area

Operational modelling approaches for built-up and urban areas

• Simple Gaussian plume or puff models (ALOA, PHAST, etc.)

• Diagnostic wind flow models coupled with Eulerian or Lagrangian

dispersion models (PMSS, QUIC-URB, etc.)

• CFD based models (RANS or LES Navier-Stokes, Lattice-Boltzmann)

• Network of streets models

• SIRANE : box canopy + Gaussian plume steady model

(Soulhac et al., 2011, 2012)

• SIRANERISK : box canopy + Gaussian puff unsteady model

(Soulhac et al., 2016)
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1. – Introduction

Advantages and limitations of the SIRANERISK approach

• Fast model, well adapted for regular network of streets urban 

configurations

• Limitation of the Gaussian approach to deal with non regular urban 

patterns, suburban or industrial geometry (group of obstacles)

Development of a new atmospheric dispersion model

• To overcome the previous limitations and extend the range of possible 

applications, keeping the constraint of a low computation time

 BUILD – Building Urban and Industrial Lagrangian Dispersion model

• Main characteristics of the model

• Diagnostic parametrizations of the flow

• Urban dense Canopy : “SIRANE-like” flow description with 

improvements for the flow and turbulence field inside streets

• Obstacles : wake recirculation model

• Particles stochastic Lagrangian dispersion model to allow a continuous 

description of the concentration field
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2. – URBAN geometrical preprocessor
URBAN – Universal Recognition of Buildings Area and Network

Gridding of the domain with 1km x 1km tiles, with 1m resolution
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Grid of 1km x 1km tiles

Building geometry input data

Raster grayscale 
representation of the 

buildings geometry and height

Typical pixel size of 1 meter:
• Good description of the details
• Efficient localization in the grid



Urban buildings image processing

• Image processing toolbox to analyze the building height raster images

2. – URBAN geometrical preprocessor
URBAN – Universal Recognition of Buildings Area and Network
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3. – Parameterized flow models

Zonal parameterizations of the wind and turbulence field

• Dense canopy and street-canyons

• Obstacles wake recirculations

• Roughness sublayer

• Atmospheric boundary layer
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3. – Parameterized flow models
3.1. – Dense canopy and street-canyons
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Uniform longitudinal mean velocity

• The longitudinal velocity is 

quite uniform in the street, only 

dependent on the component 

of the flow parallel to the street

• Km and KH are parameterized 

according to the analytical 

model of Soulhac et al. (2008)

   street m H * extu y,z u K K u cos  



Transverse mean velocity field

• Linear model for the flow

• Street coordinates

• Assumption of separated variables

3. – Parameterized flow models
3.1. – Dense canopy and street-canyons
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Transverse mean velocity field

• Vector field

• Validation against wind tunnel 

experiments

3. – Parameterized flow models
3.1. – Dense canopy and street-canyons
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Parametrization of turbulence parameters

• Uniform values for k and e, scaled on u*

• For example, turbulent kinetic energy k is modelled with:

3. – Parameterized flow models
3.1. – Dense canopy and street-canyons
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3. – Parameterized flow models
3.2. – Obstacles wake recirculations

Recirculation in the wake of an isolated obstacle

• Flow around an obstacle

• Recirculation length
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3. – Parameterized flow models
3.2. – Obstacles wake recirculations

Analytical model of advection-diffusion of the velocity 

defect in the wake of a rectangular building

• Application for different building aspect ratios
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3. – Parameterized flow models
3.2. – Obstacles wake recirculations

Generalization for a building of any shape

• Based on the image of the building, advection-diffusion 

process of the velocity defect is emulated by translation-

blurring of the image

• The recirculation area is defined by thresholding the 

grayscale velocity defect field

14B&W image of a building Grayscale velocity defect field Recirculation area



3. – Parameterized flow models
3.2. – Obstacles wake recirculations

Validation against analytical solution for a rectangular

building
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3. – Parameterized flow models
3.2. – Obstacles wake recirculations

Application on a 1km x 1km tile for 2 wind directions

• From the same algorithm, we can also evaluate
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3. – Parameterized flow models
3.2. – Obstacles wake recirculations

Mean velocity field inside the recirculation zone

• Recirculation shape defined by length and local height

• By analogy with the linear recirculation flow model in street
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3. – Parameterized flow models

Zonal parameterizations of the wind and turbulence field

• Dense canopy and street-canyons

• Obstacles wake recirculations

• Roughness sublayer

• Atmospheric boundary layer
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4. – Lagrangian dispersion model

Particles stochastic Lagrangian dispersion model

• Advection of particles

• Stochastic differential equation
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4. – Lagrangian dispersion model

Wall treatment

• Elastic reflection on solid walls

• Calculation of the reflection on vertical walls using the 

gradient of the building distance field:
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5. – First validations and applications
5.1. – Isolated 2D obstacle

Experimental set-up

• Wind tunnel experiment of Gamel PhD thesis (2015)

• 2D surface mounted obstacle, perp. to the wind

• Boundary layer flow over a rough wall

• Line source at 1,5H downstream of the obstacle
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5. – First validations and applications
5.1. – Isolated 2D obstacle

Experimental data

• Wind tunnel experiment of Gamel PhD thesis (2015)
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5. – First validations and applications
5.1. – Isolated 2D obstacle

Application of the URBAN geometrical preprocessor

• Computational time for 1 direction = 1.5 sec

(Dell Precision Mobile 7530)

• Recirculation shape and associated parameters
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5. – First validations and applications
5.1. – Isolated 2D obstacle

BUILD concentration field

• Computational time  = 11.1 sec
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5. – First validations and applications
5.1. – Isolated 2D obstacle

Comparison with wind tunnel and LES data

• Dimensionless concentration field

25



5. – First validations and applications
5.2. – Release on an industrial area

Real industrial site with 215 obstacles in the domain

• Feyzin refinery

• Canopy with intermediate density of buildings

26



5. – First validations and applications
5.2. – Release on an industrial area

Application of the URBAN geometrical preprocessor

• Computational time for 1 direction = 31 sec

(Dell Precision Mobile 7530)

• Recirculations shapes and associated parameters
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5. – First validations and applications
5.2. – Release on an industrial area

BUILD concentration field

• Computational time = 19.52 sec (100 000 particles)
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6. – Conclusions

• A new operational model is developed for atmospheric 

dispersion of accidental or deliberate releases in built-up 

areas

• Based on

• Enhanced network of streets parameterization of 

the flow in dense canopy

• New building wake recirculation model

• Roughness and surface boundary layer model

• First validations and applications have shown 

encouraging results and numerical performances

• Work in progress…
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