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Overview



Unexpected pollution emissions in urban areas : accidental (e.g. chemical
accidents) or malicious (e.g. hostile fire)

FIGURE – Philadelphia Refinery Explosion (Forbes, 2019)

Emergency crisis intervention from the authorities
to protect the population and the environment

Need for fast and accurate pollution models to estimate exposure risks
and provide recommendations to decision makers
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1.1 Scope of the Study



Several families of models

Trade-off between precision and complexity
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1.2 Air Pollution Models



Dispersion predicted with Gaussian (left) and CFD (right) models

(P. Armand, C. Duchenne, and L. Patryl, ITM 2015, France)

Large model sensitivity in urban areas

CFD-level accuracy is required for risk assessment
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1.3 Pollution in urban areas



Feasibility of a transport and dispersion learning model that is :

Fast
Precise
Usable for any urban area
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1.3 Contribution



"A computer program is said to learn from experience E with respect to some
class of tasks T and performance measure P, if its performance at tasks in T ,
as measured by P, improves with experience E" (Tom Mitchell, 1997)

The task T : how the machine should process the inputs

predict the concentration field subsequent to an accidental release

The performance measure P : quatitative performance at accomplishing
the task T

mean squarred error between predicted and target concentration
values

The experience E : how the algorithm experiences the data it learns from

learning useful transport and dispersion properties from a database of
various concentration fields
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2.1 Machine Learning



Weather
Obstacles

Source
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3-D CFD
Model
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Update

Model inputs : weather, obstacle map, emission source
Learning model : parametric function of the inputs
Predicted model outputs : time-integrated concentration field
Target outputs : ground truth time-integrated concentration field
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2.1 The Learning Process (1/2)
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Learning : iterative model update to minimize the prediction error

Generalization : learned model must perform well on new, previously
unseen inputs
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2.1 The Learning Process (2/2)



Deep learning algorithms requires a large quantity of data

Real data from real size or small-scall experiments

, High accuracy
/ Slow and expensive

Synthetic data from computer simulations

- Model-dependent accuracy
, Cheap, relatively fast, flexible

Synthetic data generated by Parallel Micro-SWIFT-SPRAY (PMSS)

3-D atmospheric transport and dispersion simulator
Lagrangian particle dispersion model
High time and space resolution
Accounts for the presence of obstacles
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2.2 Synthetic Data (1/2)



Training Dataset : city of Grenoble (France)

Approx. 15000 PMSS simulations
500 × 500 grid of 2 m space resolution
274 different hypothetical emissions sources
54 different stationary weather conditions
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2.2 Synthetic Data (2/2)



No Free Lunch Theorem : there is no single best learning model suited for
all problems
Problem-related criteria

Pre/post-processing : scaling, centering, vectorization
Multilayer perceptron : integrated concentration regression
Encoder/decoder blocks : (space) dimension reduction

FIGURE – Learning Model
Architecture
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2.3 Learning Model Architecture
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3.1 Generalization Test



Test Dataset : city of Paris (France)

Approx. 12000 PMSS simulations
600 × 500 grid of 2 m space resolution
222 different hypothetical emissions sources
54 different stationary weather conditions
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3.1 Test Dataset



FIGURE – Predictions vs. Ground Truth (PMSS simulations) : integrated concentration
fields (over 2 hours) in Paris (log scale)

Average mean squared error : 0.96
Accurate dispersion modelling in street intersections

Fast execution time ≈ 0.75 ms per prediction
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3.2 Learning Performance



Need for fast and accurate models of accidental/malicious air pollution in
urban areas

First learning model of air transport and dispersion usable in any urban
area

The trained model is precise and enables fast predictions

Next step : joint prediction of horizontal and vertical pollution distributions
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Conclusions



Commissariat à l’énergie atomique et aux énergies alternatives DRT

Centre de Grenoble 17 Avenue des Martyrs, 38054 Grenoble

T. +33 (0)4 38 78 44 00 F. LETI

Établissement public à caractère industriel et commercial RCS Paris B 775 685 019

Thanks for your attention


	Context and Challenges
	Scope of the Study
	Air Pollution Models
	Contribution

	AI for Dispersion Modelling
	Machine Learning
	Synthetic Data
	Learning Model Architecture

	Results
	Test Methodology
	Learning Performance

	Conclusions

