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Abstract: There is great interest now in inverse modelling in order to estimate air pollution source emissions. This 

type of modelling goes by several other aliases (e.g., top-down, backwards, adjoint, sensor data fusion, receptor, 

source term estimation). Many groups employ a procedure where the transport and dispersion (T&D) model is run 

”backwards”, starting at a sampler location.  The scientific and mathematical justifications for this methodology were 

first proposed over 60 years ago in a brief (2 page) but seminal paper by Gifford (1959).  He pointed out that, when 

run in forwards or backwards mode, the solution describes a probability distribution in space. In forwards mode, the 

probability distribution describes the distribution of pollutant concentrations, and, in backwards mode, it describes the 

distribution of probabilities that the source is at a certain location.  Gifford’s simple but elegant explanation was 

consistent with his belief in the principle of Occam’s razor (the simplest explanation is probably the best). 
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INTRODUCTION 

Over 60 years ago, Gifford (1959) published a short paper in which he attempted to simplify calculations 

of contributions of mass emissions of pollutants from multiple sources, spread over an area, to pollutant 

concentrations at a downwind receptor.  In those days before the widespread use of computers, many 

scientists searched for analytical ”short cuts” (Gifford’s words).  

 

There is much current interest in determining mass emission rates from upwind sources using observed 

concentrations at several sensors, along with knowledge of local winds and stability. For example, what 

are the actual methane emissions from a chemical facility?  Or, what is the location and magnitude of a 

chemical agent released upwind of a military facility? There are many disciplines studying this problem 

and they use multiple approaches and nomenclature (e.g., inverse, top-down, backwards, adjoint, sensor 

data fusion, receptor, source term estimation).  Hanna and Young (2017) provide a brief review of the 

several alternate methods and point out that there is a need for harmonization. 

 

The current paper relates Gifford’s suggested methodology to recently developed inverse modeling 

methods. 

 

 

SOME EXAMPLES OF CURRENT INVERSE MODELS’ USE OF GIFFORD’S APPROACH 

At the core of any of the many available inverse modeling systems is a transport and dispersion (T&D) 

model. It is important that the T&D model have minimal mean bias (otherwise the estimated mass 

emission rate could have an error proportional to the mean bias).  

 

The complexity and uncertainty of the source term estimation calculation quickly grows with the number 

of unknowns [number of sources, source locations, emissions variation with time, elevation of source 

(e.g., stack height), movement of source (i.e., automobile, ship, airplane)]. In most of the many published 

applications, the source is assumed to be at at known level (ground level or at a specific stack elevation) 

and is not moving.  

 



For the simplest problem – a single source of known location, with concentrations observed at a few 

sensor locations (including one or two near the middle of the plume), a ”brute-force” iterative procedure, 

with the T&D model run in normal forward mode, may be sufficient. An example of a simple approach is 

the EPA OTM33A method (Brantley et al., 2015). For complicated problems, advanced statistical 

optimization methods are used, including “genetic algorithms”, “Bayesian inference”, “simulated 

annealing”, and “evolutionary strategies”. The advanced genetic and evolutionary methods attempt to 

assure that the solution is the best across all possibilities.  

 

The EPA Brantley et al. (2015) source term estimation model applications involve scenarios where the 

source location is known (or at least is narrowed down to one of several possible locations close to each 

other in a specific industrial facility). They show, using field experiments with tracers, and measuring 

concentrations at a plant fenceline with a moving van, that they can estimate the mass emission rate 

within ±30 % about 70% of the time. It is important to note, though, that this success rate is partly due to 

the fact that they require that the wind and the concentration observations be steady before making an 

STE calculation.  The scenario being addressed by Brantley et al. (2015) is depicted in their photo in 

Figure 1, where the van and instrumentation are used in their field experiments. In this photo the van is 

travelling forwards and the small time series plot labelled CH4 (methane) is intended to show what might 

be observed 

 

 
Figure 1.  Photo from Brantley et el. (2015), showing van and instruments used in their OTM33A source term 

estimation methodology. 

 

Bieringer et al. (2015) employed the “backwards plume” concept in developing their source term 

estimation method, which has the SCIPUFF adjoint model as its basis.  They produced a useful diagram 

illustrating the methodology (see Figure 2 below). The letters CBR represent chemical, biological, and 

radiological.  In their words: “Our inputs in this case would be the concentration observations and 

weather information. A T&D model is then run with the reversed winds (panel B). The logical 

conjunction of the inverse plumes defines the source location that would produce the measured 

concentration.  The back-plumes from sensors within the pollution plume are combined with an ‘and’ 

operator (i.e., only locations in all such plumes are potential sources).  In contrast, the back-plumes from 

sensors not within the pollution plume are combined using ‘and not’ (i.e., only locations outside those 

plumes are potential sources). Panels C and D show this process.  Panel D shows the source location area 

which results. With the source location in hand, one can proceed much more successfully with source 

strength estimation via the forward methods.” 

 



 
 
Figure 2. Depiction of a backwards transport and dispersion model STE method (Bieringer et. al. 2015). The dark 

diamond in part D is the best estimate of the source location. The acronym CBR refers to 

chemical/biological/radiological agents. 

 

 

The success of STE depends on having at least 2 or 3 sensors that are reporting significant (non-zero) 

concentrations, preferably in the middle and near the edges of the pollutant cloud.  Hopefully, if sensors 

are located along the plume centerline at various distances downwind, the concentrations are decreasing 

with distance.  It is also very useful to have one or two sensors outside of the plume, recording zero.  

Those “null” sensors can help identify locations where the source is not. Even with wind directions that 

are close (say 10 or 20°) to being aligned with the source and sensor locations, the plume edge may only 

graze the sensor network, leading to uncertain STE estimates. 

 

In the adjoint inverse modelling method, a forward T&D model is run in the backwards direction, 

adjusting parameters to fit concentration observations.  This adjoint method (e.g., used in SCIPUFF, 

Sykes et al. 2014) adheres to Gifford’s (1959) concept that the dispersion model produces a spatial field 

of probabilities. With this probabilistic framework, the probability fields from each sampler’s back-plume 

are assumed to be independent.  With several sampler locations to consider, the problem turns into a 

statistical optimization problem.   

 

Sykes (2007) and Chowdhury and Sykes (2008) published examples of the model’s applications to the 

ETEX field experiment, where the tracer release was from a location in NW France and there were about 

200 sensors scattered around Europe. In this application, bith the source magnitude and its location were 

assumed to be unknown.  Figure 3 shows the adjoint inverse model’s probability distribution of predicted 

source locations for one of the ETEX tracer releases. The highest probability is the red colored area in the 

center of the color contours. A major focus of the two papers was to test methods for combining 

observations from neighboring sensors in order to speed up the solution.  For example, if there is an area 

with a group of 10 sensors that are observing concentrations that are all within 30 % of each other, then 

they can be considered as one sensor in the model calculations. 

 

Platt and Deriggi (2012) present results of an exercise where several source term estimation models were 

applied to the Fusion Field Trial 2007 (FFT07) data. A set of about 100 samplers were set out in a square 

array, and tracer gas was released upwind of the array. The models covered the range from adjoint to 

complex statistical optimization. It was assumed that the location and the magnitude of the source were 

unknown.  The results were mixed, with the models predicting within a factor of two some of the time, 



but producing large magnitude errors in a few cases.  As mentioned earlier, results are better if the 

samplers provide a more detailed coverage of the plume (along wind and laterally).  

 
 

 
Figure 3. SCIPUFF adjoint model predictions of probabilities (color contours) of source location using observstions 

from sensors (triangles) during an ETEX field experiment (from Sykes, 2007).  Actual source was at black dot near 

the NW corner of France.  

 

FURTHER COMMENTS 

I am pleased to see a recent increase in references to Gifford’s 1959 paper in published papers on inverse 

modeling and STE.  Because the paper was 60 years old and its title did not reflect its application to 

inverse modeling, it was neglected at first.  I hope that the curren paper can further advance recognition of 

Gifford’s contribution. 
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