3

GHENI

UNIVERSITY

**9** Stijn Van Leuven<sup>1,2,3</sup>

**HARMO** 22

Pieter De Meutter<sup>1,3</sup>, Johan Camps<sup>1</sup>, Piet Termonia<sup>2,3</sup> & Andy Delcloo<sup>2,3</sup>

## SOURCE RECONSTRUCTION BASED ON INVERSE MODELLING WITH DEPOSITION MEASUREMENTS

Belgian Nuclear Research Centre

sck cen

# CASE STUDY // Undisclosed <sup>106</sup>Ru release in 2017



### **Observations**

UNIVERSITY

sck cen

- September October 2017
- air concentration (up to 180 mBq/m<sup>3</sup>) and deposition (up to 90 Bq/m<sup>2</sup>) in Europe

### **Source term** from previous literature

- location → Mayak nuclear installation
- **release**  $\rightarrow$  200 500 TBq (1.6 4 g <sup>106</sup>Ru)
- based on air concentration measurements

CASE

### **Location of deposition detections**



### **P** Research question

Theoretically, can (mobile, cheap) wet deposition measurements be used to complement (fixed, expensive) air concentration measurements for the purpose of inverse modelling?

MODELS

ELS U

OBJECTIVES METHODS





# **THEORY // Inverse modelling**

 source-receptor-sensitivity M<sub>ij</sub> is the sensitivity of observation y<sub>i</sub> to source term x<sub>j</sub>

$$y_i = \sum_j M_{ij} x_j$$

- only need to **calculate**  $M_{ij}$ 's once to generate  $y_i$  for any  $x_j$
- we consider y as either **air concentration** (Bq/m<sup>3</sup>) or **deposition** (Bq/m<sup>2</sup>)  $\rightarrow$  different SRS fields  $M_{ij}$  for each quantity



## **THEORY // Air concentration and deposition have different** physical implications for inverse modelling



# **MODELS // Flexpart + FREAR**

- ATM → Flexpart v10 (Pisso et al. 2019) in backward-in-time mode (Seibert et al. 2004, Eckhardt et al. 2017)
- inverse modelling code → FREAR (*De Meutter and Hoffman 2020*), open-source

FREAR v1

sck cer

| Input   | <ul> <li>SRS fields from ATM (Flexpart)</li> <li>environmental observations (air concentration)</li> </ul>                          |            |                                             |       |
|---------|-------------------------------------------------------------------------------------------------------------------------------------|------------|---------------------------------------------|-------|
| Methods | <ul> <li>cost function optimisation</li> <li>Bayesian inference</li> <li>possible source region</li> <li>field of regard</li> </ul> |            | More info at<br>• H22-066<br>(presentation) |       |
| Output  | <ul> <li>Source term</li> <li>release location (probability)</li> <li>release amount</li> <li>release timing</li> </ul>             |            | • H22-079<br>(poster)                       |       |
|         |                                                                                                                                     | L          |                                             |       |
| CASI    | THEORY MODELS                                                                                                                       | OBJECTIVES | METHODS                                     | RESUL |



# **OBJECTIVES // Adding deposition to FREAR**

• **FREAR v1** uses activity air concentration

$$c = M_c \cdot x$$

• **new implementation** for this study

$$\begin{bmatrix} c \\ d_{\text{wet}} \\ d_{\text{dry}} \\ d_{\text{tot}} \end{bmatrix} = \begin{bmatrix} M_c \\ M_{d_{\text{wet}}} \\ M_{d_{\text{dry}}} \\ M_{d_{\text{dry}}} \end{bmatrix} \cdot x$$

→ inverse modelling with multiple types of measurements simultaneously!
 (any combination)



# **METHODS // Experiments**

### **Twin experiment**

- 1. forward ATM calculation with <sup>106</sup>Ru source term (*Saunier et al. 2019*)
- 2. generate synthetic observations
- 3. inverse modelling with synthetic observations
- → eliminates model- & observational errors

CASE

THEORY

**MODELS** 

### **Real data**

**OBJECTIVES** 

- inverse modelling with real observations
- observational data from Masson et al. (2019)



**METHODS** 

RESULTS

////



# **METHODS // Observations per experiment**





# **Bayesian inference**

## Wet deposition

GHENT

UNIVERSITY

RM

sck cen



CASE

THEORY

//

### Source location probability 0.05 65 0.04 Latitude (°) 22 0.03 0.02 50 0.01 0 45 45 65 70 75 40 50 55 60 Longitude (°)



**Real data** 

MODELS OBJECTIVES METH

METHODS //

RESULTS

////



 $\overline{\mathbf{m}}$ 

GHENT

UNIVERSITY

RM

sck cen

# **Bayesian inference**

## Total (wet+dry) deposition



CASE

THEORY

//

**MODELS** 

**OBJECTIVES** 



**METHODS** 

//

RESULTS

////



**Real data** 

10 | 🤇

## **Real data**



# **Bayesian inference**





**OBJECTIVES** 

**RESULTS METHODS** //

////



# **Bayesian inference**



### Air concentration



### Wet + total deposition





//



**OBJECTIVES** 

**METHODS** 

//

RESULTS

////

12

# **CONCLUSIONS**

✓ Source reconstruction & localisation with deposition measurements is possible.

- This demonstrates that (mobile, cheap) wet dep measurements can theoretically be used to complement (fixed, expensive) air concentration measurements for the purpose of inverse modelling.
- Wet deposition measurements seem to contain less 'information' compared to air concentration (see twin experiment), but still provide very good results (see real data).

 Localisation with real data of total deposition seems to work less well (in this case + dataset).





# REFERENCES

- De Meutter, P. and Hoffman, I., 2020: Bayesian source reconstruction of an anomalous Selenium-75 release at a nuclear research institute: *Journal of Environmental Radioactivity*, **218**.
- Eckhardt, S., Cassiani, M., Evangeliou, N., Sollum, E., Pisso, I. and Stohl, A., 2017: Source-receptor matrix calculation for deposited mass with the Lagrangian particle dispersion model FLEXPART v10.2 in backward mode: *Geoscientific Model Development*, **10**(12), 4605-4618.
- Masson, O., Steinhauser, G., Zok, D., Saunier, O., Angelov, H., Babic, D., Beckova, V., Bieringer, J., Bruggeman, M., Burbidge, C. I., Conil, S., Dalheimer, A., Geer, L. E., Ott, A. D., Eleftheriadis, K., Estier, S., Fischer, H., Garavaglia, M. G., Leonarte, C. G., Zorko, B., 2019: Airborne concentrations and chemical considerations of radioactive ruthenium from an undeclared major nuclear release in 2017: *Proceedings of the National Academy of Sciences of the United States of America*, **116**(34), 16750-16759.
- Pisso, I., Sollum, E., Grythe, H., Kristiansen, N. I., Cassiani, M., Eckhardt, S., Arnold, D., Morton, D., Thompson, R. L., Groot Zwaaftink, C. D., Evangeliou, N., Sodemann, H., Haimberger, L., Henne, S., Brunner, D., Burkhart, J. F., Fouilloux, A., Brioude, J., Philipp, A., . . . Stohl, A., 2019: The Lagrangian particle dispersion model FLEXPART version 10.4: *Geosci. Model Dev.*, 12(12), 4955-4997.
- Saunier, O., Didier, D., Mathieu, A., Masson, O. and Le Brazidec, J. D., 2019: Atmospheric modeling and source reconstruction of radioactive ruthenium from an undeclared major release in 2017: *Proceedings of the National Academy* of Sciences of the United States of America, **116**(50), 24991-25000.
- Seibert, P. and Frank, A., 2004: Source-receptor matrix calculation with a Lagrangian particle dispersion model in backward mode: Atmospheric Chemistry and Physics, 4, 51-63.



# Wet deposition

## **Cost function optimisation**









**Real data** 

15













