HARMO22 10 – 13 June 2024, Pärnu, Estonia

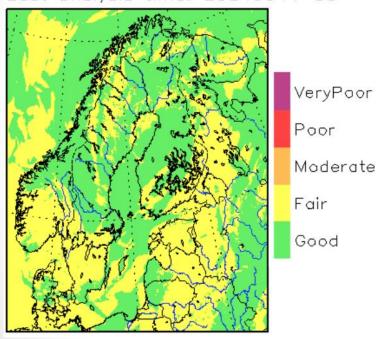
Application of SILAM model on Airviro platform

Raido Kiss^{1,2}, Marko Kaasik¹, Lars Örtegren³, Pär Ivarsson³, Rostislav Kouznetsov⁴, Erik Teinemaa²

¹Institute of Physics, University of Tartu, Tartu, Estonia

²Estonian Environmental Research Centre, Tallinn, Estonia

³Apertum AB, Linköping, Sweden


⁴Finnish Meteorological Institute, Helsinki, Finland

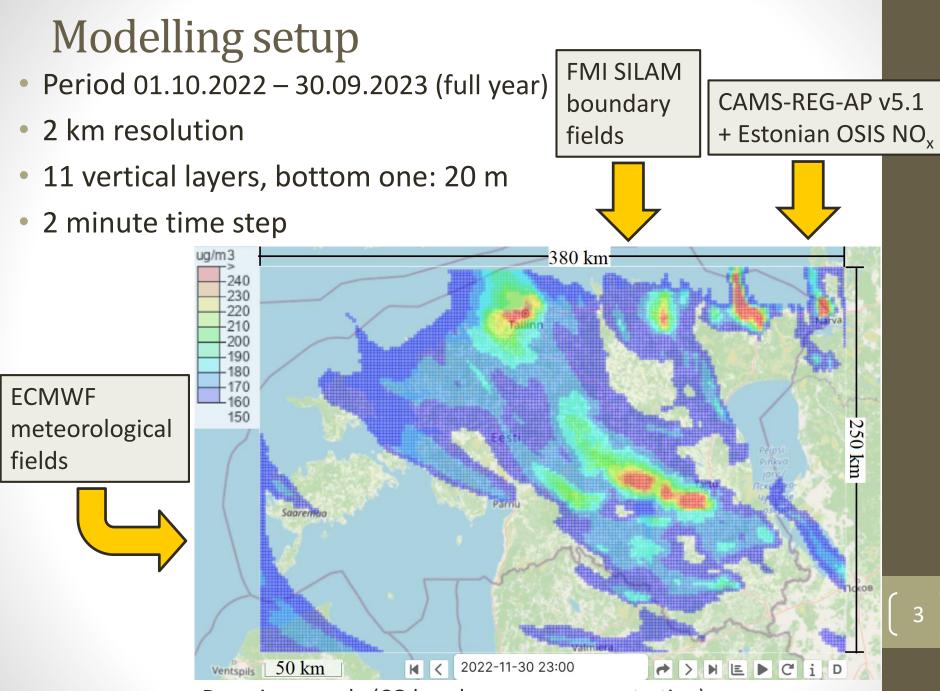
SILAM, on Airviro!

System for Integrated modeLling of Atmospheric coMposition

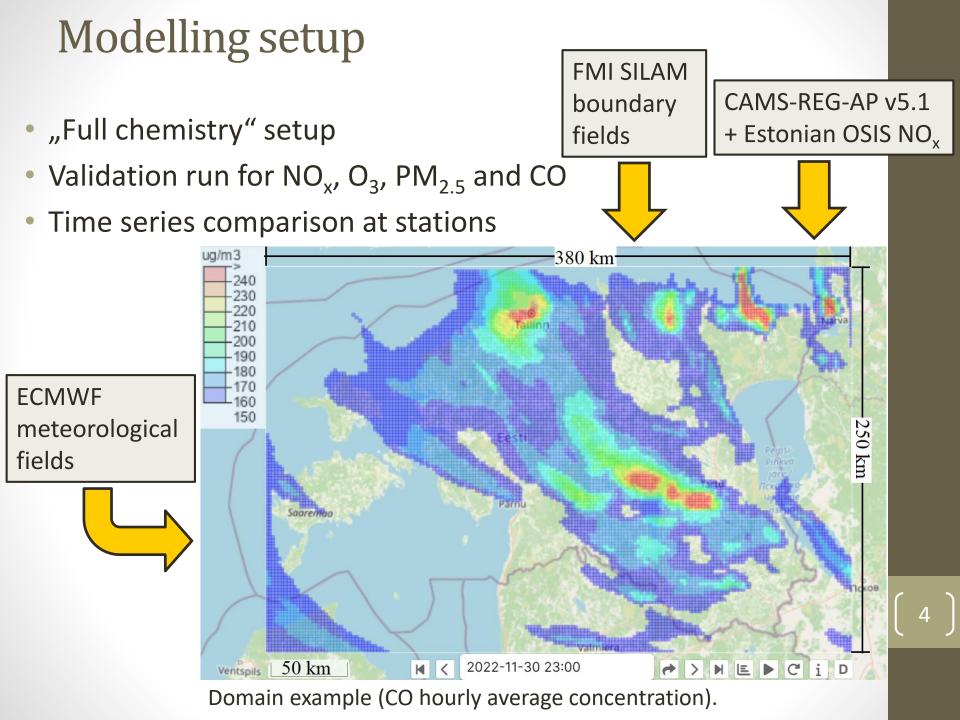
 atmospheric chemistry-transport model, developed by FMI

Forecast for AQI. Last analysis time: 20240611 00

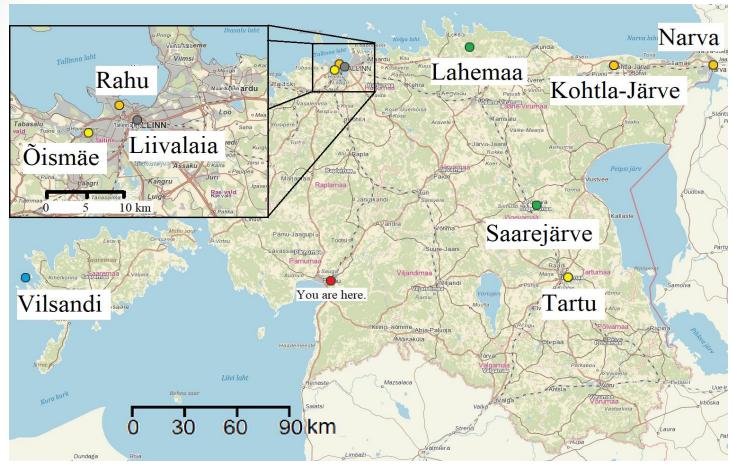
Airviro – integrated software platform for air quality management


for time series, emissions and dispersion, by Apertum AB

_		_					
	Model			EDB		≣≣	Time series
₿	Edb		0	Sources			From lists
<u>0</u>	Emissions		000	Grids			From map
ü	Area		L=	Subtables	1	Ē	Time period
×	Model Settings			Companies		ž	Criteria
f(×)	Calculate			Emission factor		√×	Variables
п.	Results			Emission function			
2	Output Settings			Time variation point Road types		~	Graph type
	Advanced Settings			Vehicles		۲Ĵ	Graph settings
 ⊙	Viewer			Road vehicles			Macros
Ē				Time variation road		٢	Output
-	Macros			Reports		G	Real time 🖸
	Snapshot	~	*	Basic settings	~		
	Watch		Ē	Macros			
à	Post-processor		0	Search criteria			
Ð	Import		2	Output settings			
Ľ	Edit	~	ے ا	Output	~		
			Ŭ				C


Airviro 🛠

• Pilot project at EERC to join them.


Aim of study: validating the model in Estonian domain after setup. Model timeseries comparison with measurements at stations.

Domain example (CO hourly average concentration).

Monitoring stations

Urban-industrial, urban background, street, rural background and rural maritime monitoring stations used for timeseries validation. Our location marked in red.

Linear correlation coefficient R

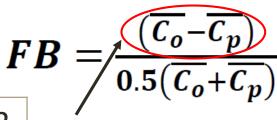
Fractional bias FB

• Symmetrical measure of overand underestimation

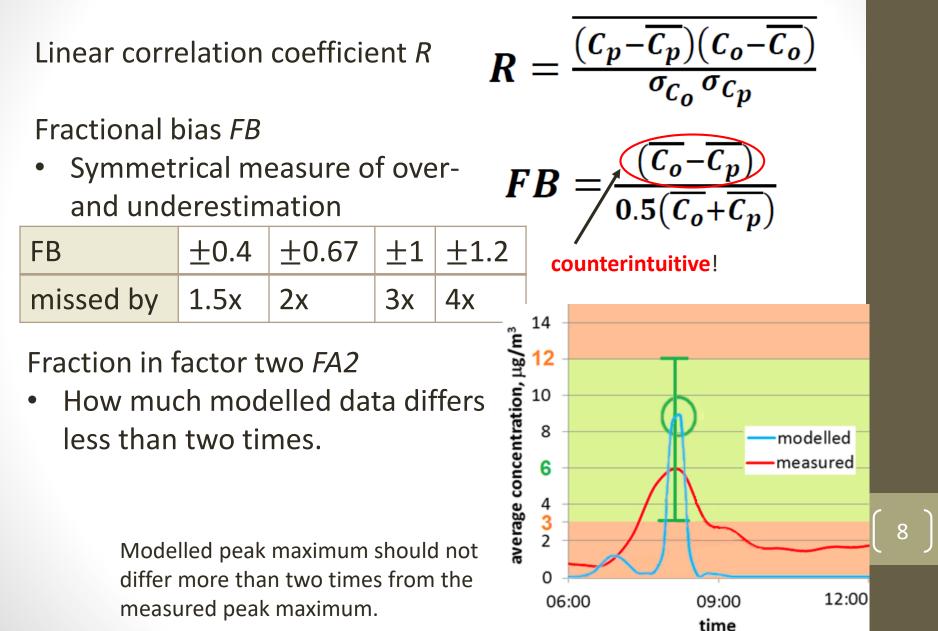
FB	<u>±0.4</u>	<u>+</u> 0.67	<u>+</u> 1	<u>+</u> 1.2
missed by	1.5x	2x	3x	4x

$$\mathbf{R} = \frac{\overline{(C_p - \overline{C_p})(C_o - \overline{C_o})}}{\sigma_{C_o} \sigma_{C_p}}$$

$$FB = \frac{(\overline{C_o} - \overline{C_p})}{0.5(\overline{C_o} + \overline{C_p})}$$


Linear correlation coefficient R

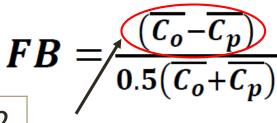
Fractional bias FB


• Symmetrical measure of overand underestimation

FB	<u>±0.4</u>	<u>+</u> 0.67	<u>+</u> 1	<u>+</u> 1.2
missed by	1.5x	2x	3x	4x

 $\frac{(c_p - c_p)(c_o - c_p)}{(c_o - c_p)}$ R

counterintuitive!


Linear correlation coefficient R

Fractional bias FB

• Symmetrical measure of overand underestimation

FB	<u>±0.4</u>	<u>+</u> 0.67	<u>+</u> 1	<u>+</u> 1.2
missed by	1.5x	2x	3x	4x

 $\mathbf{R} = \frac{\overline{(C_p - \overline{C_p})(C_o - \overline{C_o})}}{\sigma_{C_o} \sigma_{C_p}}$

counterintuitive!

Fraction in factor two FA2

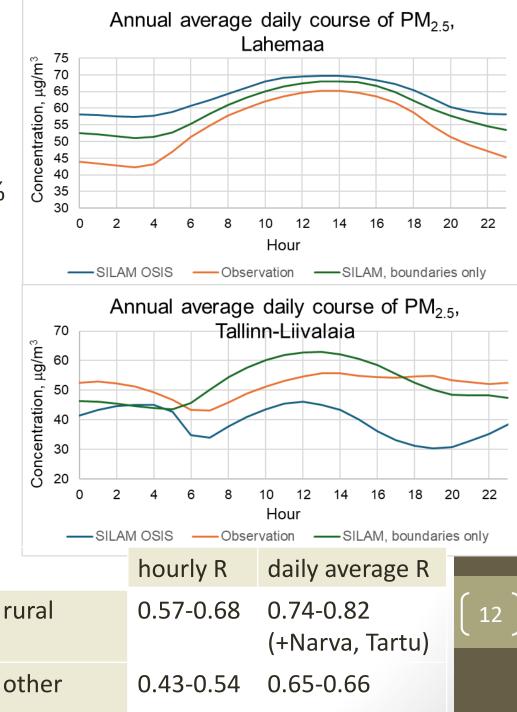
• How much modelled data differs less than two times.

Statistics applied to concentration...

- …annual average daily course
- …hourly values, hourly values with daily course removed
- ...daily averages, maxima and minima

Results: NO₂

	hourly FB	hourly FA2	hourly R
best	-0.77, 2x overestimation	0.41, urban & rural background	0.65, Tallinn background
worst	-1.25, 4x overestimation	0.09, Tallinn background	0.1, urban industrial


- R = 0.5-0.6 (urban), 0.4-0.5 (rural)
- Similar for daily course and daily course removed
- ⇒ SILAM predicts both quasi-periodical daily pattern and longer time scale changes
- European domain run: moderate overestimation only in rural background.

Results: NO

- Urban modelled NO fraction bigger than measured
 - Measured 20%, modelled nearly 50%
- \Rightarrow is even more overestimated in urban stations
- European domain run: hourly values underestimated

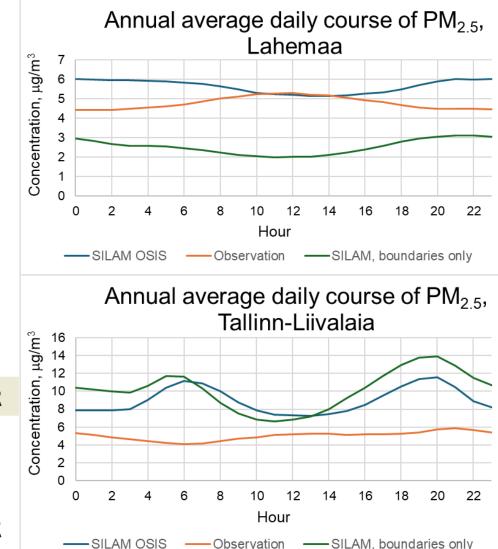
Results: O₃

- Despite NOx, at most only 30% overestimated
- Hourly FA2 > 0.5 except Tallinn
- Tallinn daily course silam has two maxima, R near zero
- Other stations daily course R near perfect, FA2 = 1
- Daily maxima FB < 0.12
- European domain run: also highly accurate, less problems with daily course, better results in Tallinn.

Results: CO

- Underestimated by factor 1.5 or less
- Not measured in rural Saarejärve, Vilsandi

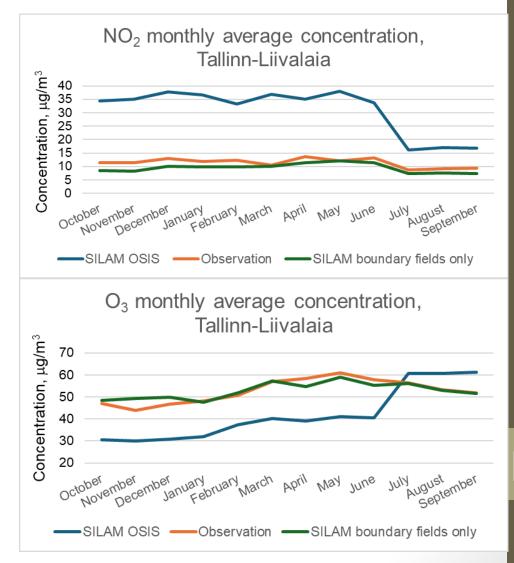
	R	FA2
hourly	0.48-0.70	> 0.94 (Tartu 0.76)
daily course	0.44-0.75 (Narva 0.9)	1


- Similar results with daily course removed
- daily minima and averages agree better than hourly
- \Rightarrow sub-daily peaks and lows modelled not with perfect timing
- European domain run similar; Kohtla järve R better.

Results: PM2.5

- Hourly values overestimated 15-80%, biggest in Tallinn
- All but Narva: FA2 a bit over 0.5

station type	daily course R		
rural	-0.91		
industrial	-0.50		
rural	-0.45		
hourly R	daily average R		
0.38-0.62	0.59-0.73		
ronoon domoin run.			


European domain run: similar, including negative R

14

Results: yearly performance

- CO performs best
- NO₂ still highly overestimated but well correlated
- Predicted NO₂ minimum and O₃ maximum in jul-sept
- Seasonal O₃ and NO₂ changes are actually smoother

15

Future plans

- Check emissions and model input: only NO_x that came from the national inventory is highly overestimated.
- Continue with validation excercises: full year runs after making a change
- Find out reasons for strange PM2.5 daily course (look at components of PM)

Conclusions

- NO_x highly overestimated, although yearly and daily courses and intermediate range weather-related patterns reproduced reasonably well.
- SILAM has been validated extensively. Input source data bias?
- Despite NO_{χ} , O_3 predicted rather accurately.
- In general, CO (originating mostly from heating) reproduced best.
- PM_{2.5} moderate overestimation, inadequate daily course.

Acknowledgements

This research was supported by Estonian Ministry of Education and Science, research grant PRG714.

Thank you!

Raido kiss, University of Tartu, raido.kiss@ut.ee

Conclusions

- NO_x highly overestimated, although yearly and daily courses and intermediate range weather-related patterns reproduced reasonably well.
- SILAM has been validated extensively. Input source data bias?
- Despite NO_{χ} , O_3 predicted rather accurately.
- In general, CO (originating mostly from heating) reproduced best.
- PM_{2.5} moderate overestimation, inadequate daily course. Thank you!
- Raido kiss, University of Tartu, raido.kiss@ut.ee