FUGITIVE GHG FLUX ESTIMATION USING MOBILE ONSITE MEASUREMENTS AND REVERSE MODELLING

Applicated Service on WWTP and landfills

13/06/2024 Maxime NIBART

Field campaigns Team

Elisa ALLEGRINI
Clément ROMAND
Guillaume PELLE
Matthieu TROMBETTI

Modelling Team

Victor DAVID
Marine LAPLANCHE
Emilie LAUNAY

Contents

1. INTRODUCTION

Waste Water Treatment plants, Landfills Previous work

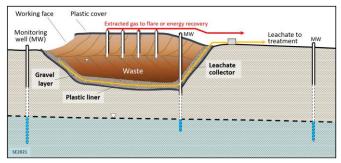
- 2. METHODOLOGY of the SERVICE
- 3. SITES CONSTRAINS & PERFORMANCES

4. PERSPECTIVES

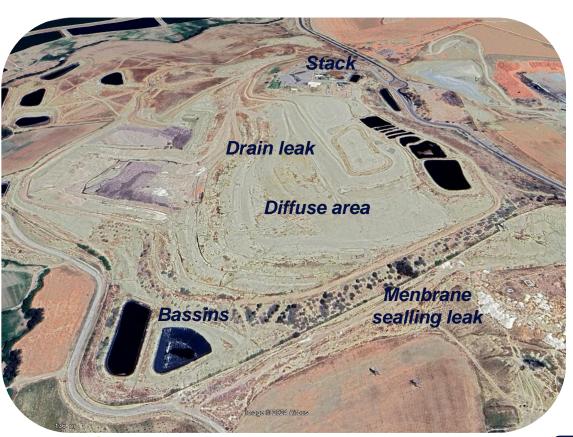
1. INTRODUCTION

Waste Water Treatment Plants (WWTP)

CH4 & N20 TYPICAL SOURCES

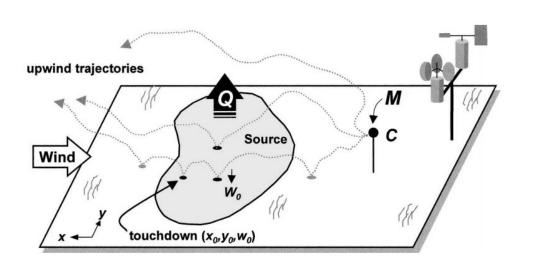


Tank leak



Landfills

CH4 TYPICAL SOURCES



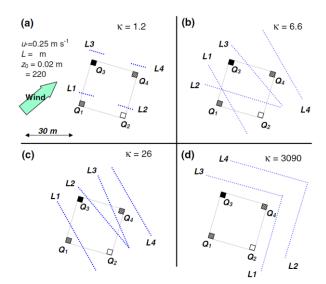
Picture from « Environmental geology »

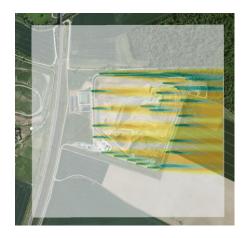
Previous work

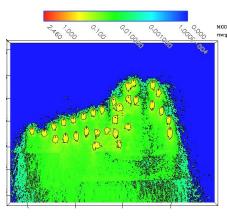
- BEGAN IN 2015: JOINT WORK SUEZ ARIA LSCE
- WASTE MITI EIT PROJECT
- ALBERGEL ET AL 2017 IN HARMO18

n sources and m sensors:

$$\begin{pmatrix} \left(\frac{C_{1,1}}{Q_1}\right)_{sim} & \cdots & \left(\frac{C_{1,n}}{Q_n}\right) \\ \vdots & \ddots & \vdots \\ \left(\frac{C_{m,n}}{Q_1}\right)_{sim} & \cdots & \left(\frac{C_{m,n}}{Q_n}\right) \end{pmatrix} \begin{pmatrix} Q_1 \\ \vdots \\ Q_n \end{pmatrix} + \begin{pmatrix} C_{background} \\ \vdots \\ C_{background} \end{pmatrix} = \begin{pmatrix} C_1 \\ \vdots \\ C_m \end{pmatrix}$$


Previous work


- FORWARD/BACKWARD PLUMES WITH PMSS MODEL
- CONDITION NUMBER CRITERIA
- TESTED ON 2 LANDFILLS


Condition Number

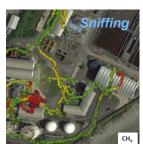
$$\kappa = \left\| \left(\frac{c}{Q} \right)_{sim} \right\| \left\| \left(\frac{c}{Q} \right)_{sim}^{-1} \right\|$$

13/06/2024 | Scan360



Current Situation

- Service branded as AirAdvanced®Scan360
- More than 40 cases (France, UK, South Africa)
- **Landfills and WWTP**


- 1- Raw water inlet
- 2- Primary settling
- 3 Biological treatment 4-Clarification
- 5-Final disinfection 6- Primary sludge thickening
 - 7- Activated sludge flotation
 - 8-Anaerobic digestion
- 9-Mechanical dewatering system 10-Biogas holders
- 11 Gas power generation
- 12-Odor control

2. METHODOLOGY

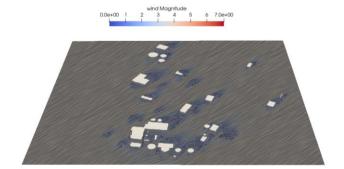
Step 1 : Field Campaign

- ON SITE METEO STATION
- SMALL SIZE ANALYZER (LICOR, LGR, AERIS)
- TOO EXPENSIVE FOR A NETWORK
- MOBILE MEASUREMENTS:
 - 1 Hz
 - Sniffing on SITE for source identification
 - Walking around sources
 - Driving around site

Step 2: Modelling

METEO DATA ANALYZE

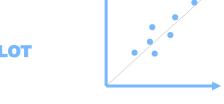
- STEADY SITUATION
- SUB PERIOD SELECTION
- SENSORS AGGREGATION
 - AUTOMATIC SELECTION FOR LOCAL MAX


- EMISSIONS PRIOR
 - GEOMETRY: SNIFFING+EXPERT
 - PROPORTIONAL TO AREA & NEARBY CONCENTRATION

Step 2: Modelling

- DISPERSION MODELLING
 - PMSS 3D MODEL : PSWIFT+PSPRAY
 - FORWARD PLUME EXTRACTION AT AGGREGATE POINTS LOCATION

INVERSION METHODS


OPTION #1: SINGLE FACTOR REGRESSION WITH QQ-PLOT

OPTION #2: SINGLE FACTOR REGRESSION WITH SCATTER PLOT

OPTION #3: MULTIPLE FACTORS REGRESSION:

CONDITION NUMBER OFTEN HIGH

OPTION #4: ITERATIVE FITTING

$$\begin{pmatrix} (\frac{C_{1,1}}{Q_1})_{sim} & \cdots & (\frac{C_{1,n}}{Q_n}) \\ \vdots & \ddots & \vdots \\ (\frac{C_{m,n}}{Q_1})_{sim} & \cdots & (\frac{C_{m,n}}{Q_n}) \end{pmatrix} \begin{pmatrix} Q_1 \\ \vdots \\ Q_n \end{pmatrix} + \begin{pmatrix} C_{background} \\ \vdots \\ C_{background} \end{pmatrix} = \begin{pmatrix} C_1 \\ \vdots \\ C_m \end{pmatrix}$$

3.

SITES CONTRAINS & PERFORMANCES

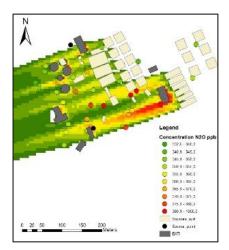
Sites Constrains: theory versus real life

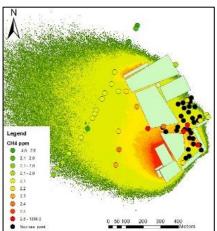
NO PERFECT SITE!

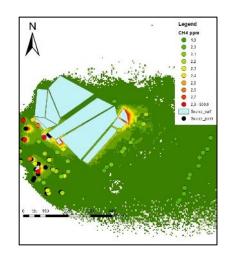
IN THE SITES:

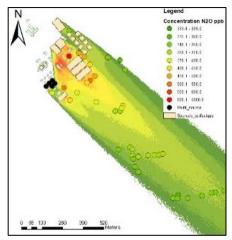
ATEX ZONE
OSBTACLES
STEEP TERRAIN

OUT OF THE SIDE:


PRIVATE PROPERTIES PARASITE SOURCES


TOO FAR: TOO LOW CONCENTRATION


Typical observed configurations

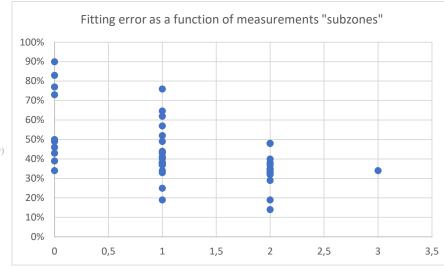

ONLY INSIDE OBSERVATIONS

INSIDE OBS + 1-2-3 CROSS OR ALIGNED SECTIONS

How to evaluate the performances of one SCAN360 ?

GLOBAL UNCERTAINTY? UNCERTAINTY PER SOURCE?

Cost of Sensitive study not compatible with low service price


wind speed measurement, wind direction measurement, CH_4/N_2O concentration measurement, GSP localization of CH_4/N_2O mobile sensor, wind speed steady state hypothesis for modelling, wind direction steady state hypothesis for modelling, aggregation of CH_4/N_2O points, model fitting error (regression error, atmospheric turbulence estimation, internal dispersion model error)

INDICATOR OF EASY OR NOT FITTING:

Average relative error Statistics on the 40 cases :

43.3% for CH4 and 40.4% for N2O

43.2% for WWTP and 40.4% for Landfills

4. PERSPECTIVES

Perspectives

BUILDING AN EMISSION FACTORS DATABASE

Improve knowledge

Improve automatic regression not only based on concentration but also on source type

PERFORMANCE & UNCERTAINTIES

Compute standard scores (FAC2, NMES, FB, R)
Automatization of sensitivity study

THANK YOU

