

Assessment of urban air quality using SIRANE dispersion model and a new method for estimating traffic emissions

^aC.V. Nguyen, ^aL. Soulhac, ^aP. Charvolin and ^bG. Sabiron

11th June 2024

22th HARMO conference, Pärnu, Estonia

^a Ecole Centrale de Lyon, CNRS, Université Claude Bernard Lyon I, INSA Lyon, LMFA, UMR 5509, 69130, Ecully, France

^b Department of Control, Signal and System, IFP Energies Nouvelles, Solaize, France

CENTRALELYON

INSTITUT NATIONAL DES SCIENCES APPLIQUÉES LYON

CNIS

CENTRALELYON

Urban air quality

- Outdoor air pollution has caused 4.2 million premature deaths worldwide in 2019 (WHO, 2022)
- High health risks in urban areas due to:
 - High pollution levels
 - Large urban population
- NO₂ pollution mainly due to traffic emissions (Restrepo, 2021)

CENTRALELYON

New method for estimating traffic emissions

- Floating car data available for real-time traffic velocity
- Replicability to any territory

Mesoscopic model vs. COPERT (State-of-the-art)

4

SIRANE

- Urban dispersion model based on street network concept (Soulhac, 2000)
 - Simplified consideration of buildings
 - Point, line, and surface sources
 - Multi-species, taking into account NO-NO₂-O₃ chemical reactions
 - Source apportionment
- Description of urban geometry

CENTRALE LYON

SIRANE Modelling blocks

Box model for each street

- Advection along the street axis induced by the parallel component of the wind
- Turbulent diffusion across the interface between the street and the external atmosphere

Exchange model at intersections

Gaussian plume model into surface boundary layer

Urban canopy represented by a street network

Street canyon modelled by a shoe box

CENTRALE LYON

Case study Description

- Area: Lyon (France)
- Periods (2023):
 - 30th January 5th February (winter)
 - 21th 27th May (spring)
 - 19th 25th June (summer)
- Pollutant: NO₂

Domain of the case study

Case study Modelling chain

Case study Mean weekly concentrations

Case study Mean hourly concentrations

ÉCOLE CENTRALELYON

11

Case study Mean hourly concentrations

ÉCOLE CENTRALELYON

12

13

Case study QQ plots

NTRALE LYON

Modelled concentrations tend to overestimate measured concentration peaks

CENTRALE LYON

Case study Statistical indices

	Expression	Optimal value	Criteria (Chang et Hanna, 2004)			
FB	$\frac{\overline{C_p} - \overline{C_m}}{0.5(\overline{C_p} + \overline{C_m})}$	0	$-0.3 \le FB \le 0.3$			
ER	$\overline{\left(\frac{ C_p - C_m }{0.5(\overline{C_p} + \overline{C_m})}\right)}$	0				
NMSE	$\frac{\overline{\left(C_p - C_m\right)^2}}{\overline{C_p} \overline{C_m}}$	0	$\sqrt{NMSE} \le 2$			
R	$\frac{\overline{\left(C_p - \overline{C_p}\right)}(C_m - \overline{C_m})}{\sqrt{\left(C_p - \overline{C_p}\right)^2} \ \overline{\left(C_m - \overline{C_m}\right)^2}}$	1				
MG	$\exp\bigl(\overline{\ln(\mathcal{C}_m)} - \overline{\ln(\mathcal{C}_p)}\bigr)$	1	$0.7 \le MG \le 1.3$			
VG	$\exp\left(\overline{\left(\ln(\mathcal{C}_m) - \ln(\mathcal{C}_p)\right)^2}\right)$	1	$VG \leq 1.6$			
FAC2	Proportion of estimates that check $0.5 < C_{\rm p}/C_{\rm m} < 2$	1	$FAC2 \ge 0.5$			
$C_{\rm m}$: measured concentration $C_{\rm p}$: modelled concentration						

Case study Statistics

30th January 2023 - 5th February 2023 (winter)

RALELYON

Station	FB	ER	NMSE	R	MG	VG	FAC2
A7 Sud Lyonnais	-0.059	0.352	0.280	0.670	0.978	1.227	0.881
Trafic Jaurès	-0.047	0.320	0.192	0.737	1.050	1.196	0.886
Lyon Périphérique	0.048	0.339	0.174	0.749	1.131	1.191	0.910

21th - 27th May 2023 (spring)

Station	FB	ER	NMSE	R	MG	VG	FAC2
A7 Sud Lyonnais	0.109	0.430	0.253	0.637	1.063	1.329	0.756
Trafic Jaurès	-0.273	0.438	0.563	0.260	0.774	1.394	0.764
Lyon Périphérique	0.036	0.488	0.311	0.417	1.036	1.456	0.711

19th - 25th June 2023 (summer)

Station	FB	ER	NMSE	R	MG	VG	FAC2
A7 Sud Lyonnais	0.092	0.553	0.560	0.222	1.080	1.688	0.673
Trafic Jaurès	-0.222	0.427	0.357	0.384	0.789	1.376	0.765
Lyon Périphérique	0.008	0.577	0.497	0.393	0.968	1.855	0.648

Generally the statistics meet Chang and Hanna (2004) quality criteria. Nevertheless, there is a poor correlation in spring and summer.

Conclusion

- Assessment of urban air quality using a new method for estimating traffic emissions:
 - Quality of estimates varies according to time period and geographical area
 - Worse results in summer
 - $\circ~$ Poorer results for A7 Sud Lyonnais station
 - Globally the statistics meet Chang and Hanna (2004) quality criteria
- Outlook:
 - Compare traffic emissions with COPERT method
 - Takes into account low traffic neighbourhoods, car classification/restriction, etc.
 - Consider emissions from industries, heating, residential-tertiary activities etc.

Thank you for your attention Questions ?

From measurement to mesoscopic model

- Starting point : sensor measurements (PEMS)
- Microscopic step for accurate estimation
- Mesoscopic step for replicability and limited comp. cost.

CENTRALE LYON

Road Traffic Emissions Estimation

- State of the art: copert
 - O European Standard for the Calculation of Vehicle Emissions
 - O Combination of laboratory test data, on-road measurements and modelling
 - O Macroscopic Emission Model
 - O Rely only of traffic speed
- - O Mesoscopic Emission Model
 - Rely on infrastructure, slope, speed limit
 and traffic speed
 - O Learned from data from microscopic modelling

	Microscopic	Mesoscopic	Macroscopic	
Data	Instant. (1 Hz)	Aggregated	Aggregated	
Accuracy	Very high	High	Low	
Comp. cost	High	Low	Low	
Model		R-TAMS real-time air modeling system	copert	

A7 Sud Lyonnais

Trafic Jaurès

Lyon Périphérique

