

Modeling atmospheric degradation of amine compounds H22-095

Daphné Ladet^{1,2}, Yelva Roustan¹, Olivier Duclaux² and Stéphane Jouenne²

¹CEREA, joint laboratory Ecole des Ponts ParisTech/ EDF R&D, Paris-Est University, Champs-sur-Marne, France

²Air Quality Laboratory, TotalEnergies R&D, Solaize, France

22nd International Conference on Harmonisation within Atmospheric Dispersion Modelling for Regulatory Purposes 10–13 Juin 2024, Pärnu, Estonia

Motivation :

Carbon capture utilization and storage (CCUS) technologies have become an essential component of the strategy to combat global warming by carbon dioxide emissions mitigation from industrial sources and power generation.

- * CCUS will have a wide deployment for industries
- * Technologies with a mine-based absorption processes standing out as effective means to reduce $\rm CO_2\, emissions$

Problem : nitramines and nitrosamines are compounds classified as carcinogens by the World Health Organization, and their guideline level* (by NIPH) is set at **0.3 ng/m³** in air for the sum of the two.

* Derived Minimal Effect Level, associated with a cancer risk level of 1 to 10⁻⁶ after lifetime exposure, from Norwegian Institute of Public Health (NIPH).

© Adapted from Nielsen and al. 2010

Figure 1. General degradation pathways for amine compounds.

3 | 12/06/2024 - HARMO22

Objectives

F

General objective : be able to assess new local health and environmental effects which involves emissions in atmosphere from CCUS technologies and provide modeling adapted tools.

Use of the **chemistry-transport model** (CTM) with improvements to the chemistry modules to take into account OH-initiated degradation pathways and particle formation. **Problem**: *No access to air ambient measured data at ground level and in plumes to do comparisons yet.*

First solution before 3D modelling: Comparison with results of

Experimental chamber setup and measured data from:

atmospheric chamber experiments.

Tan, W., Zhu, L., Mikoviny, T., Nielsen, C. J., Tang, Y., Wisthaler, A., ... & Stenstrøm, Y. (2021). Atmospheric chemistry of 2-amino-2-methyl-1-propanol: a theoretical and experimental study of the OH-initiated degradation under simulated atmospheric conditions. The Journal of Physical Chemistry A, 125(34), 7502-7519.

Setting up

SSH aerosol

Use of a Plume-in-Grid from the Polyphemus air quality plateform with SSH-aerosol.

Polyphemus

Study of 2-amino-2-methyl-1-propanol
[AMP] (CH3C(NH2)(CH3)CH2OH)

Methodology: comparison of measure/modelisation

0-dimensional modeling with SSH aerosol as box model:

- Recreate as possible conditions in atmospheric chamber during experiment : HO₂ and NO emission to reproduce Isopropyl nitrite (IPN) photolysis.
- OH profile calculated from AMP measured profile and ajusted with a coefficient.

Figure 2. Temporal evolution of temperature and relative humidity / Measured (dotted curves) and modeled temporal profiles by SSH-aerosol for AMP and background species, Experimental data from J. Phys. Chem. A 2021, 125, 34, 7502-7519

4 | 12/06/2024 - HARMO22

Modeling amine chemistry:

- Consider only gaseous degradations.
- Work with a CB05 modified version.
- Focus on degradation compounds profiles.

Use of chemistry degradation pathways presented in Table 1 : *branching ratio of kinetic rate coefficient are unchanged*.

reaction	rate coefficient	ref.
$\begin{aligned} (\mathbf{CH}_3)_2(\mathbf{CH}_2\mathbf{OH})\mathbf{CNH}_2 + \mathrm{OH} &\longrightarrow 0.06 (\mathbf{CH}_3)(\mathbf{CH}_2\mathbf{OH})\mathbf{C} = \mathbf{NH} \\ &+ 0.28 \mathrm{CH}_3\mathrm{C}(\mathrm{O})\mathrm{NH}_2 \\ &+ 0.42 (\mathbf{CH}_3)_2(\mathbf{CHO})\mathbf{CNH}_2 \end{aligned}$	2.8×10^{-11}	a
$ \begin{array}{l} + 0.24 (\mathrm{CH}_3)_2 (\mathrm{CH}_2 \mathrm{OH}) \mathrm{CNH} \\ \mathbf{(CH}_3)_2 (\mathbf{CHO}) \mathbf{CNH}_2 + \mathrm{OH} & \longrightarrow 0.95 \mathbf{(CH}_3)_2 \mathbf{C} = \mathbf{NH} \\ + 0.05 \mathrm{CH}_3 \mathrm{C(O)NH}_2 \end{array} $	7.0×10^{-11}	b
$(CH_3)_2C=NH + OH \longrightarrow CH_3CN + CH_2O$	2.0×10^{-11}	b
$(CH_3)(CH_2OH)C=NH + OH \longrightarrow (CH_3)(CHO)C=NH$	2.0×10^{-11}	Ь
$(CH_3)_2(CH_2OH)CNH \longrightarrow (CH_3)_2C=NH + CH_2O$	4.6×10^{-3}	Ь
$(CH_3)_2(CH_2OH)CNH + NO \longrightarrow (CH_3)_2(CH_2OH)CNHNO$	$(8.5 \pm 1.4) \times 10^{-14}$	c
$(CH_3)_2(CH_2OH)CNH + NO_2 \longrightarrow (CH_3)_2(CH_2OH)CNHNO_2$	$(3.2 \pm 0.5) \times 10^{-13}$	c
$(CH_3)_2(CH_2OH)CNHNO + OH \longrightarrow (CH_3)C(O)CH_3 + CH_2O + N_2O$	1.0×10^{-10}	b
$(CH_3)_2(CH_2OH)CNHNO + h\nu \longrightarrow (CH_3)_2(CH_2OH)CNH + NO$	$0.34 \times J_{NO2}$	d
$(CH_3)_2(CH_2OH)CNHNO_2 + OH \longrightarrow (CH_3)_2(CHO)CNHNO_2$	$(7.5\pm3.5)\times\!10^{-13}$	e,f

Table 1. AMP gaseous degradations pathways in atmospheric conditions (from Tan and al. 2021) employed in modeling, bimolecular rate coefficients in units of $cm^3.molecules^{-1}.s^{-1}$ and unimolecular rate coefficients in units of s^{-1} . a (Haris and al. 1983), b (Tan and al. 2021), c (Lazarou and al. 1994°, d (Nielsen and al. 2012), e (Borduas and al. 2015), f (Barnes and al. 2010)

Results : Comparison measure/modelisation in Od

Differences : Forcing OH concentrations, not complete initial conditions, not considering particles formation or other reactions, homogeneity hypothesis.

 \rightarrow Good results with gaseous degradation only.

Figure 3. Measured (dotted curves) and modeled temporal profiles (a) for $B_{CH3}/B_{CH2}/B_{NH2} = 6:42:24$ (b) for $B_{CH3}/B_{CH2}/B_{NH2} = 6:50:24$, $(CH_3)_2(CHO)CNH_2$ (AMPal), $(CH_3)_2C=NH$ (P2IMI), $CH_3(CH_2OH)C=NH$ (IPP), and $(CH_3)_2(CH_2OH)NHNO_2$ (AMPNO2).

Figure 4. Observed and modeled temporal profiles of products in the OH-initiated AMP photo-oxidation experiment on 2015.06.15. (CH3)2(CHO)CNH2 (blue color), (CH3)2C=NH (red color), CH3(CH2OH)C=NH (wine color), and (CH3)2(CH2OH)NHNO2 (dark cyan color). From J. Phys. Chem. A 2021, 125, 34, 7502-7519

5 | 12/06/2024 - HARMO22

Comparison of ADMS and Plume-in-grid model to assess CCS

ADMS : World leading software for modelling industrial air pollution.

- Currently used for future impacts of CCS.
- Gaussian plume model : Constant meteorological and concentration fields in the whole domain.

Plume-in-Grid : combination of an eulerian model and a gaussian puff model.

- Eulerian model : chemistry and transport of atmospheric background pollutants.
- Gaussian puff model : chemistry and transport of industrial point emissions in interaction with the background.

Refinery contribution to PM2.5 (µg.m⁻³) - Eulerian model

12/06/2024 - HARMO22

Figure 6. Plume-in-grid model.

Plume: Gaussian puff model

- 1.0 - 0.8

- 0.2

Methodology : Theoretical case

Objective : perform two similar simulations between Plume-in-Grid and ADMS.

Amine atmospheric degradation pahways : gas only

- PinG : use of SSH-aerosol model with AMP specific degradation pathways. (previously presented)
- ADMS : use of amine chemistry module with general degradation pathways.

Case study on city area :

- PinG : 3-dimensional meteorological fields from WRF simulation.
- ADMS : extract meteorological data at source location from WRF simulation.

Source : AMP emission of 5.9 g/s

Emissions corresponds to the leakage rate for the treatment of 1 Mtonne of CO₂/year

ADMS Amine chemistry

Ocerea

(5)

Figure 7. Model options included in ADMS amine chemistry module, *From CERC 2024*

AMINE + *OH	→	amino RADICAL + H ₂ O	(1a)
	→	$RN(H)C^{*}H_2 + H_2O$	(1b)
amino RADICAL + O ₂	→	imine + HO ₂	(2)
amino RADICAL + NO	→	NITROSAMINE	(3)
amino RADICAL + NO ₂	→	NITRAMINE	(4a)
	→	imine + HONO	(4b)
	hv		

amino RADICAL

NITROSAMINE

 \rightarrow

Results : spatial impacts with different chemistry modelling

Importance of the 3D approach

- Inhomogeneous concentration/meteorological fields.
- ♦ highlighting the spatial and temporal variability of secondary compound formation \rightarrow not possible with ADMS.

Figure 8. Comparisons between PinG (top maps) and ADMS (bottom maps) for a passiv tracer, AMP, (CH₃)₂(CH₂OH)CNHNO (AMPNO) and (CH₃)₂(CH₂OH)CNHNO2 (AMPNO2) for averages concentration from 2018-04-02 to 2018-04-11 included (colorbar representation set up at the maximum concentration in PinG for each compounds).

8 | 12/06/2024 - HARMO22

Results : maximum concentration as a function of distance from source

Approach differences

- CTM approach gives more consistent results based on areas of high NOx emissions.
- PinG gives lower impacts close to the source contrary to ADMS.
- ADMS would tend to give concentration values that can be overestimated.
- → Need air measurement data to compare concentration levels.
- → Highlight why CTM model must be used for CCS environmental assessment.

Figure 9. Comparisons between PinG (line curves) and ADMS (line dotted curves) for $(CH_3)_2(CH_2OH)CNH_2$ (AMP), Nox (sum of NO and NO_2), $(CH_3)_2(CH_2OH)CNHNO2$ (AMPNO2) and $(CH_3)_2(CH_2OH)CNHNO$ (AMPNO), from averages concentration 2018-04-02 to 2018-04-025.

Future work – emissions, impacts and modeling

MODEL VALIDATION : comparison with measurments in atmospheric chamber

 EUPHORE atmospheric chamber experiment for AMP.

Comparisons between measured data and simulated data in OD including particles formation.

- Setting up a 3D case and simulate one or more periods of CCUS use to estimate medium to long-range health and environmental impacts.
- possibility of adding new amine species and other products to best represent the solvents used.
- Emission assumptions based on SCOPE (Sustainable OPEration of post-combustion Capture plants) campaign data: extrapolation for full-scale sites

\Diamond

Water transfer, dry and wet depositions

- FuNitr : Future Drinking Water Levels of Nitrosamines and Nitramines near a CO2 Capture Plant.
- Implementation of washing (wet deposition) for amines using FuNitr transfer coefficients.
- Quantification of dry and wet deposits in CTM and estimated transfers to drinking water (via watersheds).

Norway recommended drinking water limit for nitrosamine + nitramine level :

4 ng/L

F

Measure by mass spectrometer

- PTR-MS-TOF : Proton Transfer Reaction Mass Spectrometer Time Of Flight
- Ultra-sensitive gas analyser for real-time measurment of volatil organic compounds (VOCS)
- measurement of amines / deg. Compounds :
 - ➢ in stack emissions for better emission.
 - In ambient air, comparison with modelling.

Aknowlegment:

Armin Wisthaler : providing experimental informations and amine measured data.

Thank you for your attention !