C I M A

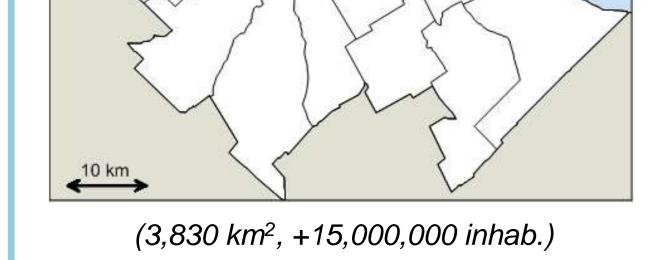
Andrea L. Pineda Rojas¹ and Emilio Kropff²

CONICET

U B A ¹ Centro de Investigaciones del Mar y la Atmósfera (CIMA), UBA-CONICET-CNRS IFAECI, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Argentina ² Fundación Instituto Leloir– IIBBA/CONICET, Buenos Aires, Argentina

MOTIVATION & OBJECTIVES

Metropolitan Area of Buenos Aires (MABA) MABA


Air quality monitoring stations in the city of Buenos Aires

DAUMOD-GRS [1] is an urban-scale atmospheric dispersion model that shows acceptable performance in estimating the hourly concentration of nitrogen dioxide (NO₂) [2]. Given the few air quality monitoring sites in the MABA, there is a need to have a good understanding of the model results at locations other than the stations. In this work, we analyse both input and output (I/O) variables at the time of occurrence of relatively high hourly NO₂ concentrations to study the solutions of the DAUMOD-GRS in the MABA. The role of

THE DAUMOD-GRS MODEL

	GRS [4] Interaction between NO _x -VOCs-O ₃	
 Based on the two-dimensional diffusion equation 		
 Developed for area sources of intensity Q_i The x-axis is in the mean wind direction \$\int_{Q_Q_1Q_2Q_3}^{Q_1Q_2}^{Q_1Q	ROC + $hv \rightarrow ROC + RP$ RP + NO $\rightarrow NO_2$ NO ₂ + $hv \rightarrow NO + O_3$ NO + $O_3 \rightarrow NO_2$ RP + RP $\rightarrow RP$ NO ₂ + RP $\rightarrow SGN$ NO ₂ + RP $\rightarrow SNGN$	

CEN: urban background COR: urban traffic LB: residential industrial

chemistry on NO_2 events is further explored performing a sensitivity analysis to key parameters. The aim is to understand the behaviour of the model across the metropolitan area in order to improve its performance in a context of scarce air quality data.

 $C = a \left[Q_0 x^b + \sum_{i=1}^{N} (Q_i - Q_{i-1})(x - x_i)^b \right] / (|A_1| k z_0^b u_*)$

ROC: all VOCs species RP: all radicals SGN: stable gaseous nitrogen SNGN: stable non-gaseous nitrogen

METHODOLOGY

1. Conditions of the simulations

> DAUMOD-GRS is applied over the MABA considering:

• Four years (2009-2012) of surface hourly meteorological data from the domestic airport (\rightarrow)

• NOx and VOCs area source emissions from the high resolution (1km x 1km) emissions inventory developed by Venegas et al. [5].

• Clean air concentration values as regional background levels.

 \succ For each NO₂ event: [NO₂] > 106 ppb [6], the I/O variables are stored.

2. Clustering of NO₂ events

>A k-means algorithm is applied considering as classification variables:

Hour (H), NO₂ concentration ([NO₂]), wind speed (WS), wind direction (WD), air temperature (T), sky cover (SC), total solar radiation (TSR), NO_2/NOx concentration ratio (ratio), atmospheric stability class (KST), etc.

 \succ An appropriate number of clusters (k) is obtained by analysing solutions for different values of k.

\succ The differences between the clusters in the conditions of the events are analysed.

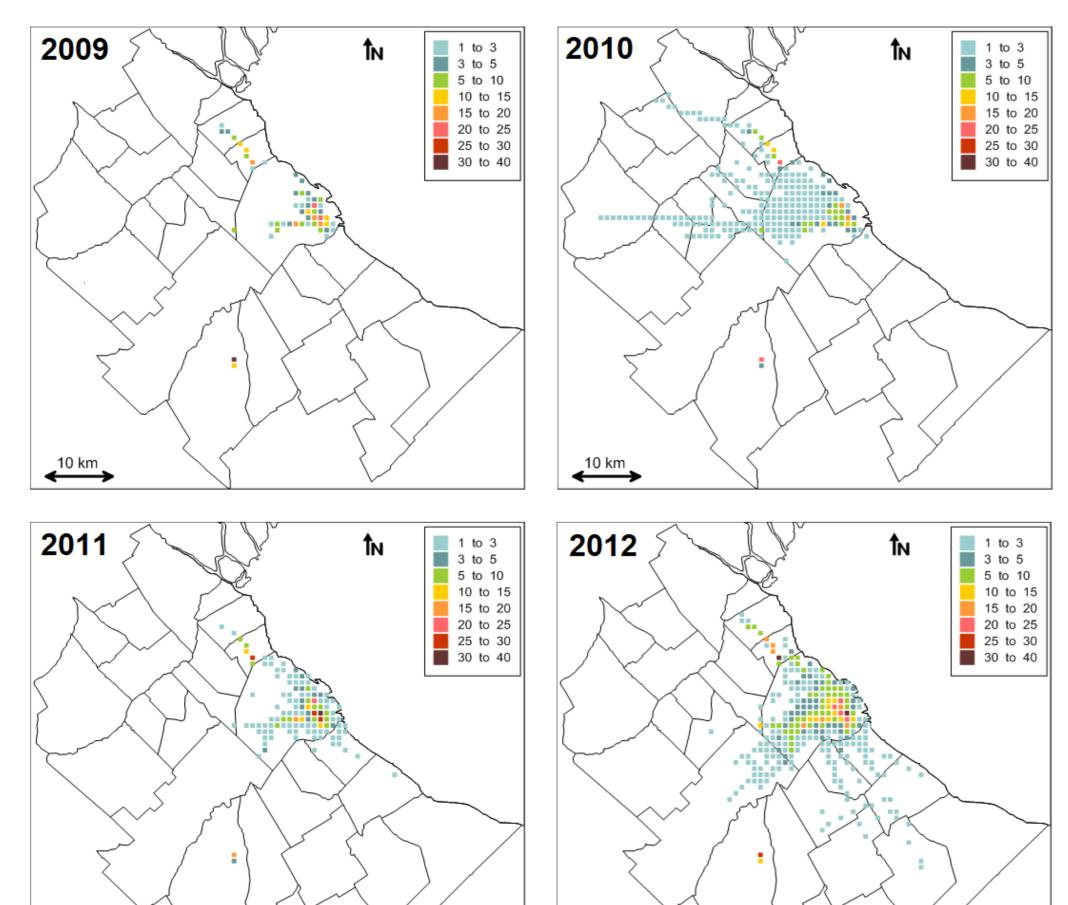
3. Standard (SS) and sensitivity simulations (S1-S4)

 \succ Key parameters for the chemical module (GRS):

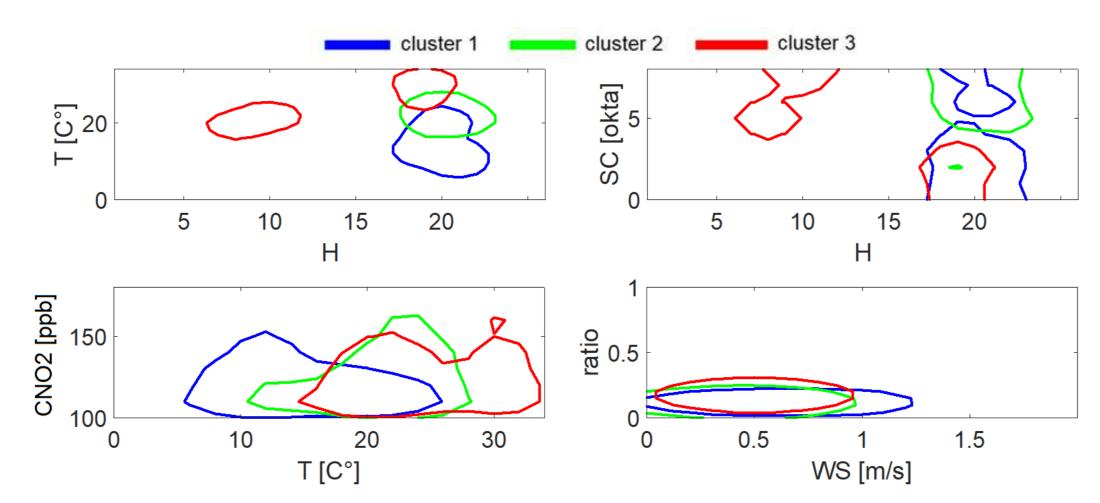
• Δt_r : reaction time,

- f-NO₂: fraction of NO₂ in the NOx emission,
- $[O_3]_r$: regional background O_3 concentration.

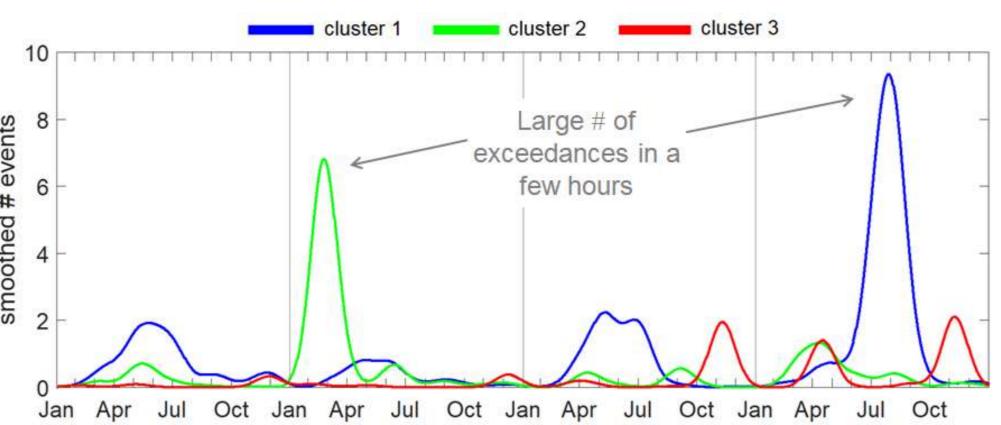
	Parameter			
Simulation	∆t _r	f-NO ₂	[O ₃] _r	
SS	variable	0.10	20 ppb	
S1	60 min			
S2	variable	0.15		
<mark>S</mark> 3		0.10	30 ppb	
<mark>S4</mark>		0.10	30 ppb 40 ppb	

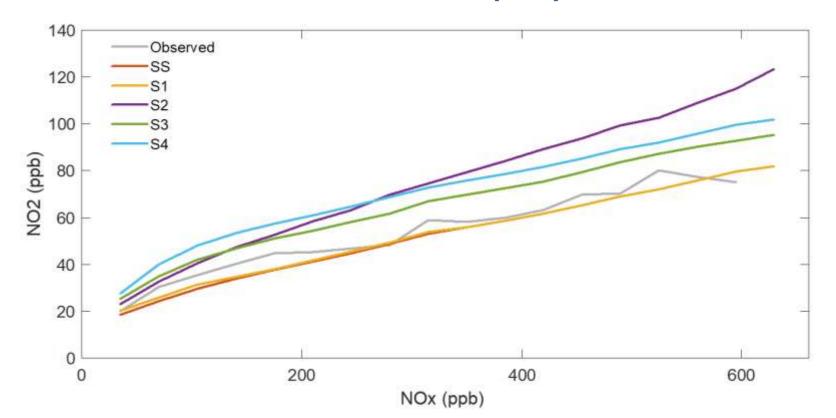

RESULTS

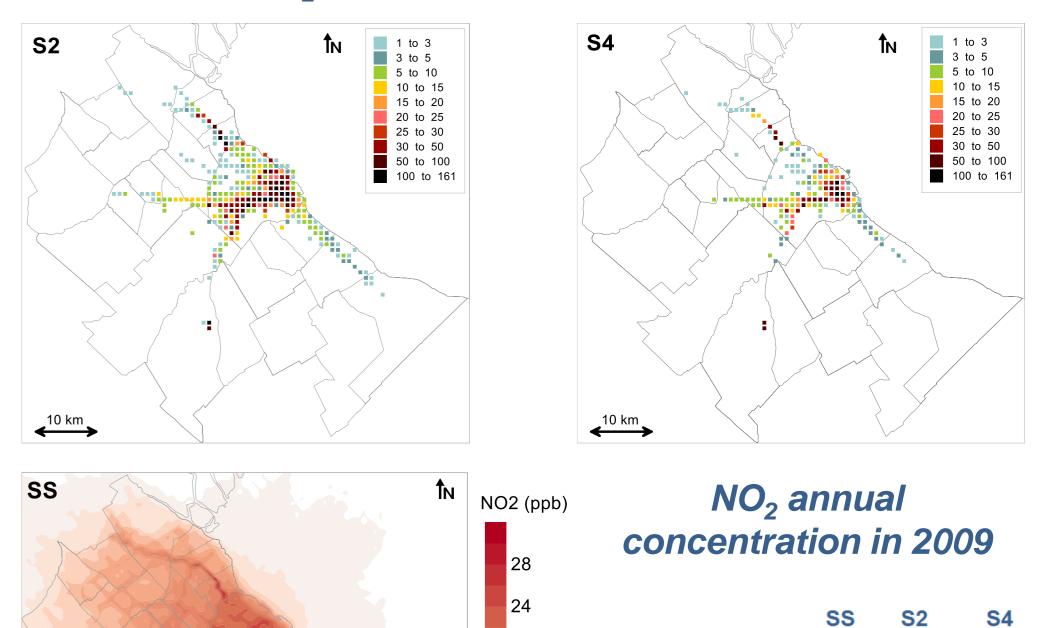
1. NO_2 events in the MABA (2009-2012)


2. Conditions leading to NO₂ events

3. Sensitivity to key model input parameters


Number of hourly NO₂ concentrations above 106 ppb per year in the standard simulation (SS)


Curves containing 90% of the objects in each cluster over different values of the I/O variables


Smoothed distribution over time of number of NO₂ events of each cluster

Average NO₂ vs. NOx concentrations for each sensitivity simulation at CEN (UB) station

Number of NO₂ events in 2009, in simulations S2 and S4

Max freq. hourly

Area of events

events (events/yr)

2510

2988

ÎN │ NO2 (ppb) [▶]

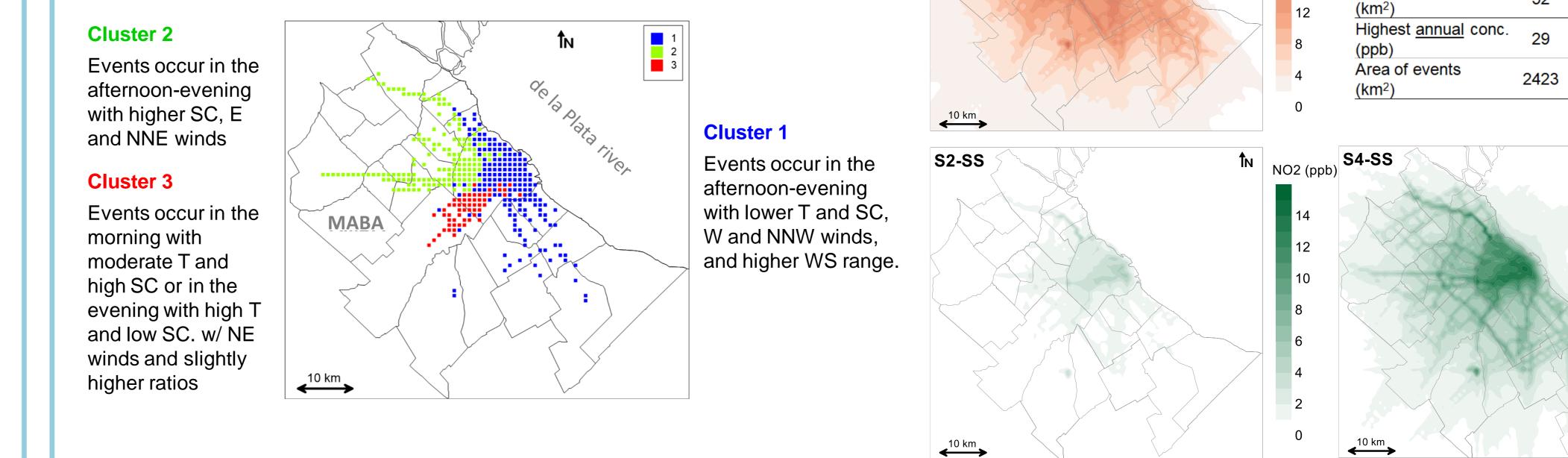
<^{10 km}→

CONCLUSIONS

> Over a period of four years, N=2335 events were obtained and can be described by three clusters.

<^{10 km}→

 \succ The temporal distribution of the clusters revealed a change in the reporting of low WS values from 2010 onwards, leading to an overestimation in the area of exceedances.


 \succ The conditions leading to NO₂ events are variable, except for the NO_2/NOx concentration ratio, which is low (< 0.2) for all clusters.

> Simulations of sensitivity to key parameters for chemistry showed a small effect of Δt_r , while f-NO₂ and $[O_3]_r$ significantly affected NO₂ events highlighting the importance of their estimation.

> Analysis of the conditions leading to high concentrations of NO₂ can provide information on the behaviour of the model, which may be particularly useful in locations with poor air quality monitoring, such as MABA.

months

Distribution of the dominant cluster

REFERENCES

[1] Pineda Rojas, A.L. and Venegas, L.E., 2013: Upgrade of the DAUMOD atmospheric dispersion model to estimate urban background NO₂ concentrations. Atmos. Res., 120-121 147-154.

[2] Pineda Rojas, A.L., Borge, R. and Kropff, E., 2022: Characterisation of errors in an urban scale atmospheric dispersion model through clustering of performance metrics. Air. Qual. Atmos. Health, https://doi.org/10.1007/s11869-021-01145-0 [3] Mazzeo, N.A. and Venegas, L.E., 1991: Air pollution model for an urban area. Atmos. Res., 26,165–179.

[4] Azzi, M., Johnson, G. and Cope, M., 1992: An introduction to the generic reaction set photochemicalsmog model. In: Proc. 11th Int. Clean Air Conf, pp. 451–462.

[5] Venegas, L.E., Mazzeo, N.A. and Pineda Rojas, A.L., 2011: Chapter 14: Evaluation of an emission inventory and air pollution in the Metropolitan Area of Buenos Aires. In: D. Popovic (ed.) Air Quality-Models and applications, Editorial In-Tech, 261-288. [6] WHO, 2021: WHO global air quality guidelines: particulate matter (PM2 5 and PM10), ozone, nitrogen dioxide, sulfur dioxide and carbon monoxide. World Health Organisation, https://apps.who.int/iris/handle/10665/345329