

### Refining Urban Wind and Pollutant Dispersion Modelling: From Airborne Lidar Data to CFD Models

Dana Lüdemann<sup>1</sup>, Niels Troldborg<sup>1</sup>, Nikolas Angelou<sup>1</sup>, Jan Pehrsson<sup>2</sup> and Ebba Dellwik<sup>1</sup>

1 Technical University of Denmark, Department of Wind and energy Systems 2 PDC-ARGOS ApS

25-07-2024

**DTU** Wind



### **PDC-ARG**

**DTU Risø Campus** 











### Outline

- Introduction & Objective
- Building reconstruction
- CFD Simulations (RANS)
- Wind Scanner Campaign (Validation)
- Initial Results
- Conclusions and Outlook

## Introduction & Objective

Predicting both high-resolution wind patterns and atmospheric dispersion of pollutants is challenging in urban areas due to the complexity of the urban canopy.

#### **Challenges:**

- Difficulty in obtaining realistic urban geometry for flow models
- Need for a fine computational grid to capture building details and cover urban flow scales
- Lack of validation data matching model capabilities

#### **Objective:**

 Single house study to investigate the challenges and establish validation for our CFD and dispersion simulations





### Airborne Lidar data

Lidar Point cloud of surface coordinates (x,y,z)

#### Airborne Lidar System:

 Laser scanner, an IMU (Inertial Measurement Unit), and a GPS (Global Positioning System) attached to airplane





### **Geoflow TU Delft - Highly realistic 3D reconstruction**



*R.* Peters, B. Dukai, S. Vitalis, J. van Liempt, and J. Stoter. (2022). Automated 3D Reconstruction of LoD2 and LoD1 Models for All 10 Million Buildings of the Netherlands. Photogrammetric Engineering and Remote Sensing, 88(3), 165–170.

## Single building reconstruction

#### Airbone Lidar Pointcloud





~20 min to process a 1km<sup>2</sup> pointcloud area in 3 LoDs

#### LoD 2.2





## PDC-ARG Immersed Boundary Method (Troldborg et al., 2021)

A method for CFD to represent surfaces on non-conforming grids in EllipSys3D (RANS):

- $IB \rightarrow$  watertight surface composed of unstructured triangles
- Cut hole in background CFD grid; enclosing the IB
- Impose boundary conditions for all governing equations on the hole faces (HFs)
- Flow not solved inside object/hole
- Probe points (PPs) defined at a distance from the IB









### Simulation results – EllipSys3D RANS





|               | LoD 1.2   | LoD 2.2   | LoD 2.2 + Terrain |
|---------------|-----------|-----------|-------------------|
| <b>Fx</b> [N] | 232.231   | 185.6319  | 243.5852          |
| <b>Fy</b> [N] | -13.88692 | -10.84574 | -15.27790         |

DTU

## Wind Scanner Campaign

- Experiment took place in summer 2011
- DTU short-range Wind Scanner
- Continuous Wave Lidar with a sampling frequency ~390 Hz
- Line scanning pattern:











## Wind Conditions



### **Comparison of Radial Windspeeds**



DTU Wind

DTU

Dana Lüdemann

## First comparison of Wind profiles



**DTU Wind** 



### **Conclusion & Outlook**

- <u>Rapid technological development</u> of airborne lidar technology has led to <u>radically improved accuracy</u> and realism in 3D digital surface models of urban areas
- <u>Make real and model worlds match</u>: Achieve this with detailed building reconstruction and high-resolution Wind Scanner data

**Take-home Message**: Our work shows new possibilities in accurately modeling urban environments, which is crucial for various applications of local scale dispersion and flow modeling.

#### **Future Work:**

- Matching inflow conditions for better comparative analysis
- Further processing of Wind Scanner data to compare Turbulent Kinetic Energy (TKE)
- Conducting a tracer experiment to validate our CFD dispersion simulation <sup>©</sup>







# Thank you for your attention!

Further Questions? dansa@dtu.dk



#### Acknowledgements:

This partnership has received funding from the European Union's "EURATOM" research and innovation program under the 101061037 grant agreement.









- R. Peters, B. Dukai, S. Vitalis, J. van Liempt, and J. Stoter. (2022). Automated 3D Reconstruction of LoD2 and LoD1 Models for All 10 Million Buildings of the Netherlands. Photogrammetric Engineering and Remote Sensing, 88(3), 165–170..
- Troldborg, N., Sørensen, N. N., & Zahle, F. (2022). Immersed boundary method for the incompressible Reynolds Averaged Navier–Stokes equations. Computers and Fluids, 237, [105340]. https://doi.org/10.1016/j.compfluid.2022.105340