

22nd International Conference on Harmonisation within Atmospheric Dispersion Modelling for Regulatory Purposes 10-13 June 2024, Pärnu, Estonia

T1: Approaches to model evaluation and quality assurance

IMPACT OF BOUNDARY AND INITIAL CONDITIONS ON NOx, NO₂ AND O₃ CONCENTRATIONS IN WRF-CMAQ SIMULATIONS OVER THE METROPOLITAN AREA OF BUENOS AIRES, ARGENTINA

Solange Luque, <u>Andrea Pineda Rojas</u>, Lluís Fita and Rafael Borge

Concejo Nacional de Investigaciones Científicas y Técnicas (CONICET) Centro de Investigaciones del Mar y la Atmósfera, UBA-CONICET-CNRS-IRD IFAECI, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires (UBA) Argentina pineda@cima.fcen.uba.ar

Metropolitan Area of Buenos Aires (MABA)

3,830 km², +15,000,000 inhab.

MABA is the third mega city in Latin America.

➢ It is located on flat terrain and surrounded by non-urban areas.

➢ Few observational studies on AQ (e.g., Bogo et al., 2001; Mazzeo et al., 2005).

➢ Three AQ monitoring stations measuring CO, NO₂ and PM₁₀ since 2009 (Pineda Rojas et al., 2020).

DAUMOD-GRS

(MODelo de Dispersión Atmosférica Urbana - Generic Reaction Set)

Annual mean concentration of NO₂

Pineda Rojas and Venegas, Atmos Res, 2013: https://doi.org/10.1016/j.atmosres.2012.08.010

SEUS

(Semi Empirical Urban Street model)

Venegas et al., Atmos Environ, 2014: https://doi.org/10.1016/j.atmosenv.2014.01.005

WRF-CMAQ

Source: https://www.epa.gov/cmaq/cmaqs-purpose

Its implementation in theMABA can contribute to study:

- Interactions that cannot be addressed by simple models (e.g., CC-AQ)
- The role of sources not previously considered (e.g., remote)

≻A limitation in low and middle income countries:

- Scarce AQ monitoring
- Lack of detailed input data

✓ WRF sensitivity study in the MABA

WS and WD at AEP station

Luque et al., Atmósfera, 2024: https://doi.org/10.20937/ATM.53255

✓ Implementation of WRF-CMAQ

Objectives:

Perform a sensitivity analysis to domain configuration and background O₃.
Compare modelled and observed NOx and NO₂ concentrations at two AQ sites.

Up to 4 nested domains w/ resolutions 1 km, 3 km, 15 km and 45 km

 \succ Two background O₃ concentrations:

- 20 ppb (Mazzeo et al., 2005)
- 30 ppb (default surface level in CMAQ)

Domains D1-D3: NOx and VOCs emissions from EDGAR HTAPv2 inventory (Janssens-Maenhout et al., 2015) for year 2010, processed with HERMES: transport, energy, industry, residential, ships and agriculture

<u>Domain D4</u>: Area source emission inventory developed by Venegas et al. (2011), including: road transport, aircraft operations, residential, commercial and small industry activities.

Pineda Rojas, Env Model Softw, 2014: https://doi.org/10.1016/j.envsoft.2014.05.016

WRFv4.2.1 (Luque et al., 2024):

- BouLac (planetary boundary layer)
- MM5 (surface layer)
- Noah (land surface)
- Thomson (microphysics)
- RRTMG (radiation)
- SLUCM (urban)

<u>CMAQv5.4</u>:

- CB6r3_ae7_aq
- 80 vertical levels (8 within the first kilometre)
- No bVOCs emissions
- No deposition processes

Simulation periods:

- A winter week (Jul 28 Aug 4 2012)
- A spring week (Nov 10 17 2012)
- 2 days for spin-up

CEN (urban background) COR (urban traffic) LB (residential industrial)

City of Buenos Aires

 \blacktriangleright <u>Comparison with observations</u>: NOx and NO₂ at CEN and LB

Sensitivity analysis to six <u>configurations</u>: NOx, NO₂ and O₃ at the two sites and across the MABA

WRF-CMAQ sensitivity simulations

Configuration label	# of domains	Domains	[0 ₃] _b	
stat_20ppb	1	D4		
dyn3_20ppb	3	D2-D4	20 ppb	
dyn4_20ppb	4	D1-D4		
stat_30ppb	1	D4		
dyn3_30ppb	3	D2-D4	30 ppb	
dyn4_30ppb	4	D1-D4		

3. RESULTS: Modelled vs observed hourly concentrations

stat_30ppb stat 20ppb dyn3_30ppb dyn3_20ppb (ddd) bom_xON (qdd) pom_xON dyn4_30ppb dyn4_20ppb 0 -Ó NOx_obs (ppb) NOx_obs (ppb) NO2_mod (ppb) NO2_mod (ppb) Ó NO2_obs (ppb) NO2_obs (ppb)

WINTER

SPRING

NOx

 NO_2

3. RESULTS: NOx and NO₂ hourly variations

WINTER

SPRING

NOx

 NO_2

3. **RESULTS:** Wind fields at the time of the largest NOx difference

3. RESULTS: Modelled vs observed concentrations

SPRING

stat_30ppb stat_20ppb . dyn3_30ppb dyn3_20ppb (qdd) pom_xON dyn4_30ppb (ddd) bom_xON dyn4_20ppb • NOx_obs (ppb) NOx_obs (ppb) NO2_mod (ppb) NO2_mod (ppb) 40 60 NO2_obs (ppb) Ó NO2_obs (ppb)

WINTER

 NO_2

3. RESULTS: NOx and NO₂ hourly variations

SPRING

WINTER

3. RESULTS: O₃ hourly variations

WINTER

CEN

LB

3. **RESULTS**: Model performance of different configurations

✓ There is no single configuration that performs best for all cases (pollutants, sites and weeks).

✓ Configurations with 'dyn4' are expected to better capture the variability of regional O_3 in general.

✓ Simulations with '20 ppb' perform better at CEN (UB), consistent with previous studies (e.g. Mazzeo et al., 2005).

Model performance					
metrics for configuration					
dyn4_	20ppb				

	CEN		LB	
NOx	WIN	SPR	WIN	SPR
r	0.8	0.4	0.7	0.2
FA2	0.8	0.7	0.7	0.4
FB	0.4	0.3	-0.1	0.1

	CEN		LB	
NO ₂	WIN	SPR	WIN	SPR
r	0.6	0.4	0.6	0.5
FA2	0.9	0.8	0.6	0.7
FB	0.2	0.2	-0.5	0.2

3. RESULTS: NO₂ vs. NOx errors (dyn4_20ppb)

3. RESULTS: dyn4_20ppb vs other configurations

 NO_2

O₃

3. RESULTS: dyn4_20ppb vs other configurations

 NO_2

O₃

Winter wk

3. RESULTS: Mean NO₂ concentration

Spring wk

3. RESULTS: Mean NO_x concentration

Spring wk

Winter wk

3. RESULTS: Mean O₃ concentration

dyn4_20ppb dyn3_20ppb - dyn4_20ppb dyn4_30ppb - dyn4_20 ppb 22 - 4 - 6 -5 20 2 -18 3 0 1 0 ΔΟ3 (ppb) 403 (ppb) 15 (qdd) EO 10 0 -2 -4 8 -6 -8 5 --10 -1

Spring wk

Winter wk

4. CONCLUSIONS

Main remarks

 \checkmark First implementation of WRF-CMAQ to estimate NO₂ and O₃ in MABA

✓ Peak hourly concentrations of these pollutants are sensitive to both the background O_3 level and the domain configuration.

✓ Errors in NO₂ are mainly caused by those in NOx, with some contribution from background O_3 .

✓ The dyn4_20ppb configuration seems to be appropriate for the MABA.

Next steps

Assess the sensitivity of the simulations to the height of the lower layer.

> Evaluate the performance of the model considering longer runs (two months) to have more robust metrics.

Thank you