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• Unexpected pollution emissions in urban areas: accidental (e.g. chemical accidents) or 
malicious (e.g. hostile fire)

• Emergency crisis intervention to protect the population and the environment

Figure from P. Armand et al. (2015)
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• CFD-level accuracy is required for risk assessment  

• CFD models are realistic but slow

• Crisis management requires fast intervention
≠

Figure from P. Armand et al. (2015)
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Figure from P. Armand et al. (2015)
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Problem Definitionp
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 We want to predict 3D pollution dose field (integrated concentration) 
for an exposure duration of 2 hours following an accidental release

 Instantaneous point emission: location, quantity

 Urban 3D occupancy grid: binary mask showing the presence of buildings 
at every location of the grid

 Steady wind speed and direction above urban canopy
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State of the Artp
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Complex methods (e.g., 

CFD): expensive
Geometry-dependent: do not 

generalize well to other urban

settings

PINNS: complex boundary conditions, 

convergence issues

MCxM Framework

Simple methods (e.g., 

Gaussian model): 

simplified assumptions

Figure inspired from NVIDIA Modulus Sym
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Previous Work: MCxM-2Dp
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• MCxM-2D: fast surrogate model to estimate the pollution exposure within a given time period 

• Designed to learn from 2D slices of 3D dispersion data

Figure from M. Mendil et al. (2022)
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Current Learning Approach: MCxM-3Dp

a

g

e

8

• Model inputs : stationnary wind properties above urban
canopy, 3D occupancy grid, emission source

• Model prediction: 3D dose field

• Target: synthetic 3D dose field, simulated with Parallel
Micro-SWIFT-SPRAY (PMSS)

• Learning model : parametric function (neural network) and 
gradient-based optimization
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 Raw wind state variables not used directly as inputs

 Physics-based initialization: better guidance for the 
learning process

 Masked Gaussian plume prior

Missing physics (trajectory changes, turbulence, etc.)
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• Discrepancy correction: refines the prior by accounting for physical 
interactions with buildings

• 3D correction operator is learnt from data

• Sequence of 𝑁 masking and correction to progressively model the 
impact of obstacles 
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Architecture of Correction Blockp
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2  Dimensionality reduction: 

• Unet-based encoder/decoder

• Residual connection 

 Non-linear transformation 𝜙:

• Stack linear and non-linear operations to 

approximate a neural operator (N. Kovachki et al. 

2023)

• Solution operator aims to capture physical 

structures and symmetries

• Enhance the ability to generalize to various 

boundary conditions (without retraining)
Composition of a correction block



2
2

/0
7

/2
0

2
4

Design of Experimentp
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• Training/validation area: Grenoble City, France

• 100 × 100 × 6 grid (4𝑚 horizontal resolution, varying vertical spacing)

• Test area: Paris City, France

• 100 × 100 × 6 grid (4𝑚 horizontal resolution, varying vertical spacing)

• Instantaneous emission source:

• Unit mass of the pollutant

• Constant emission height ℎ𝑠 = 2𝑚

• Regularly sampled locations

• 108 stationary weather conditions:

• 36 wind directions 𝜃 [°] ∈ {0, 10, 20,⋯ , 350}

• 3 wind speed 𝑣 𝑚𝑠−1 ∈ {1.5, 3.5, 6}

• For given initialization, PMSS simulates the steady 3D wind field and the 
unsteady 3D concentration fields for two hours 
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Results on Parisp
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• Higher accuracy: MSLE reduced by factor 3 compared to previous work (at height ~ 2m)

• Learning from comprehensive spatial data significantly improved the correction operator

• Accuracy diminishes at higher altitudes
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 Goal: fast and reliable surrogate model of dispersion in urban areas

 MCxM framework: combination of physics-based prior and discrepancy correction

 Extension to learn from comprehensive 3D spatial data

 Improved predictive performance, especially near-ground (human height)

 Future works: improve the predictive accuracy at higher altitudes and reliability (mass consistency)


