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INTRODUCTION

2

To improve on-site safety & to evaluate environmental impact

• Need for atmospheric pollutant source identification & quantification in complex industrial sites

Real-time constraint

Important for industrial companies !

➢ Health risks (cancers, …) ➢ Environmental risks (global warming, 

contamination, …)

➢ Security risks (flammability, 

explosion, …)

ATMOSPHERIC POLLUTION

Cancer cell Water pollution contamination with 

mercury, New Idria, USA, 2004
Nuclear radioactive contamination risk Refinery fire, Indonesia, 2021 (©AGUS SIPUR / AFP)
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INTRODUCTION
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➢ Inverse modelling: Dispersion prediction & recovery 

of source characteristics

Quality & accuracy of results

➢ Direct measurements of pollutant in atmosphere

Leaks & diffuse emissions difficult to characterize, 

especially in real-time

HOW TO QUANTIFY EMISSIONS ?

Drone AUSEA on a TotalEnergies site 

(©TotalEnergies)

Process: Source       Pollutant transport       SensorProcess: Source       Pollutant transport       Sensor

• Different approaches exist for inverse modelling:  
➢ Grid search “brute force” methods (Ben Salem et al., 2014)

➢ Minimization problem (Gill et al., 1981)
Requires cost function Jacobian matrix computation
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Time-consuming techniques !

Need to find an alternative: 

the adjoint state method (Chavent, 1974)



• Adjoint state method for inverse problem solving

• Application to a Lagrangian stochastic particle dispersion model

• Application results on a numerical test case

• Conclusion

OUTLINE
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ADJOINT STATE METHOD FOR INVERSE PROBLEM SOLVING

Forward model definition

5

• State equation - generally implicit (Plessix, 2006):

ด𝑭𝒔

𝒏𝑭×𝟏

(ด𝒖𝒔

𝒏𝒖×𝟏

 , ด𝒎𝒔)
𝒏𝒎×𝟏

= ณ𝟎
𝒏𝑭×𝟏

• If an explicit relationship 𝒇𝒔 exists between 𝒖𝒔 and 𝒎𝒔, 𝑭𝒔:

𝑭𝒔 𝒖𝒔, 𝒎𝒔 = 𝒖𝒔 − 𝒇𝒔 𝒎𝒔 = 𝟎

• In atmospheric dispersion context:

𝑭𝒔 forward transport and dispersion model of pollutants, originating from a source 𝒔

𝒖𝒔 concentration vector

 𝒎𝒔 source parameter vector

•  𝒎𝒔: Source position 𝒙𝒔(𝑥𝑠, 𝑦𝑠, 𝑧𝑠) & flow rate 𝑞𝑠 ⇒ 𝒏𝒎 = 𝟒
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𝑭𝒔 numerical forward model 

𝒎𝒔 model parameters

𝒖𝒔 state (output) variable



• No explicit analytical inversion of the state equation generally !

• Inverse problem must be considered as a minimization problem
To minimize the difference between the observation data 𝒅 & the model output data 𝒖𝒔 provided by 𝑭𝒔

1. Define a cost function 𝑱 depending on model parameters 𝒎𝒔 to optimize

with 𝑬 the error functional of the difference 

2. Compute 𝜵𝑱  as   𝒎𝒔
∗ = 𝐦𝐢𝐧

𝒎𝒔

 𝑱(𝒎𝒔) ⟹ 𝜵𝑱 𝒎𝒔
∗ = 𝟎

3. Solving of the minimization problem, iteratively, to recover 𝒎𝒔

ADJOINT STATE METHOD FOR INVERSE PROBLEM SOLVING

Methodology for inverse problem solving

𝑱

𝜵𝑱(𝒎𝒔
∗) = 𝟎

𝒎𝒔
∗
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ณ𝑱
𝟏×𝟏

( ด𝒎𝒔)
𝒏𝒎×𝟏

 = ณ𝑬
𝟏×𝟏

(ด𝒖𝒔

𝒏𝒖×𝟏

 , ด𝒎𝒔)
𝒏𝒎×𝟏
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• Classically, calculating 𝛁𝑱 requires the computation of the whole Jacobian matrix

ADJOINT STATE METHOD FOR INVERSE PROBLEM SOLVING

Introduction of the adjoint state equation to compute the gradient
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ด𝜵𝑱
𝒏𝒎×𝟏

≔
𝒅𝑱

𝒅𝒎𝒔

𝑻

=
𝝏𝑬

𝛛𝒖𝒔

𝒅𝒖𝒔

𝒅𝒎𝒔
+
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=
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• Classically, calculating 𝛁𝑱 requires the computation of the whole Jacobian matrix

• Matrix
𝒅𝒖𝒔

𝒅𝒎𝒔
is the bottleneck term 

➢ 𝒖𝒔 does not depend generally explicitly on 𝒎𝒔 Impossible to differentiate 𝒖𝒔 !

➢
𝒅𝒖𝒔

𝒅𝒎𝒔
must be computed for each perturbation 𝒅𝒎𝒔, typically on each grid point.

Can exceed many thousands at industrial scale, leading to large computation cost !

ADJOINT STATE METHOD FOR INVERSE PROBLEM SOLVING

Introduction of the adjoint state equation to compute the gradient
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• Classically, calculating 𝛁𝑱 requires the computation of the whole Jacobian matrix

• Adjoint state method: alternate way to efficiently compute 𝜵𝑱

➢ Formally derives adjoint equations from transport models (Pudykiewicz, 1998) 

providing sensitivity of model output 𝒖𝒔 to input variables 𝒎𝒔

➢ Instead of computing 
𝒅𝒖𝒔

𝒅𝒎𝒔
, solving of a linear system, the adjoint state equation,

specifying the adjoint state 𝝀𝒔:

ADJOINT STATE METHOD FOR INVERSE PROBLEM SOLVING

Introduction of the adjoint state equation to compute the gradient
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• Adjoint method widely used in atmospheric dispersion field 

➢ Applications to Gaussian and Eulerian models (Pudykiewicz, 1998; Giering, 2000) 

➢ Not known application to forward Lagrangian Stochastic (LS) models 

BUT:

✓ Suitable for modelling turbulent dispersion in complex environment 
✓ Reasonable computational cost

Objective: Application to a Lagrangian Stochastic model

• Case definition:

Explicit

Iterative 

Markov process

Least-square error functional

ADJOINT STATE METHOD FOR INVERSE PROBLEM SOLVING

Extension to a Markovian explicit iterative model with least-square misfit
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• Under these assumptions + observations only at final 𝑵𝑡ℎ iteration, linear adjoint system becomes iterative

• Computation of 𝜵𝑱, using 𝝀𝒔
𝟏 found solving iteratively the adjoint state equation

ADJOINT STATE METHOD FOR INVERSE PROBLEM SOLVING

Extension to a Markovian explicit iterative model with least-square misfit

H22-065-Salles Loustau Jean-06/13/2410

ด𝜵𝑱
𝒏𝒎×𝟏

=
𝛛𝒇𝒔

𝟏

𝛛𝒎𝒔

𝑻

𝒏𝒎×𝐧𝟏

ෑ

𝒋=𝟏

𝑵−𝟏
𝛛𝒇𝒔

𝒋+𝟏

𝛛𝒖𝒔
𝒋

𝑻

𝒏𝟏×𝒏𝑵

𝒖𝒔
𝑵 − 𝒅𝑵

𝒅𝑵 ∗ 𝒅𝑵

𝒏𝑵×𝟏



• Under these assumptions + observations only at final 𝑵𝑡ℎ iteration, linear adjoint system becomes iterative

• Computation of 𝜵𝑱, using 𝝀𝒔
𝟏 found solving iteratively the adjoint state equation

• Efficient way to compute 𝜵𝑱 (chain rule)

• 𝜵𝑱 obtained computing only a product iteratively

• A priori knowledge of 𝒖𝒔
𝑵, 𝒅𝑵 & 𝑵 not necessary

ADJOINT STATE METHOD FOR INVERSE PROBLEM SOLVING

Extension to a Markovian explicit iterative model with least-square misfit
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APPLICATION TO A LAGRANGIAN STOCHASTIC PARTICLE DISPERSION MODEL

• Simplified LS model        Gaussian steady isotropic homogeneous turbulence and diagonal Reynolds stresses
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• 3D/CFD Lagrangian models: Describes the turbulent pathway simulation of thousands of particles, through a 

stochastic process

H22-065-Salles Loustau Jean-06/13/2411

Wind speed ഥ𝑼

𝑠 𝒙𝒔, 𝑞𝑠 , 𝑡0



APPLICATION TO A LAGRANGIAN STOCHASTIC PARTICLE DISPERSION MODEL

• Simplified LS model        Gaussian steady isotropic homogeneous turbulence and diagonal Reynolds stresses

• 3D/CFD Lagrangian models: Describes the turbulent pathway simulation of thousands of particles, through a 

stochastic process

H22-065-Salles Loustau Jean-06/13/2411

Wind speed ഥ𝑼

𝑠 𝒙𝒔, 𝑞𝑠 , 𝑡0



APPLICATION TO A LAGRANGIAN STOCHASTIC PARTICLE DISPERSION MODEL

• Simplified LS model        Gaussian steady isotropic homogeneous turbulence and diagonal Reynolds stresses

• 3D/CFD Lagrangian models: Describes the turbulent pathway simulation of thousands of particles, through a 

stochastic process

• At each time 𝑡, 

a particle 𝑝 is fully 

described by: 

➢ its fluctuating velocity

𝑈𝑝,𝑖
′ (𝑡), for the 𝑖𝑡ℎ

space component

➢ its pseudo-mass 𝑀𝑝 𝑡 ,

constant over time under assumption 

of decay process absence
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𝑠 𝒙𝒔, 𝑞𝑠 , 𝑡0

Wind speed ഥ𝑼

𝑝: 𝑼𝒑(𝑿𝒑, 𝑡), 𝑀𝑝(𝑡)

𝑠 𝒙𝒔, 𝑞𝑠 , 𝑡0 𝑼𝒑(𝑿𝒑, 𝑡)

𝑼𝒑
′ (𝑡)

ቐ
𝑋𝑝,𝑖 𝑡 + 𝛿𝑡 = 𝑋𝑝,𝑖 𝑡 + ഥ𝑢𝑖 𝑿𝒑, 𝑡 + 𝑈𝑝,𝑖

′ 𝑡  𝛿𝑡 

𝑈𝑝,𝑖
′ (𝑡 + 𝛿𝑡) = 𝑈𝑝,𝑖

′ (𝑡) + 𝛿𝑈𝑝,𝑖
′

Stochastic variation

with 𝑋𝑝,𝑖 𝑡0 = 𝑥𝑠,𝑖
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1Thomson, D. J. (1987). “Criteria for the selection of stochastic models of particle trajectories in turbulent flows”. In: Journal of Fluid Mechanics 180.-1, pp. 529

Generalized 

Langevin Equation1



• Describes Brownian motion of small dimension particle in a fluid Markov process

• Allows to reproduce some statistics on correlation time between particles 

12

𝛿𝑈𝑝,𝑖
′ = −

1

𝑇𝐿
𝑈𝑝,𝑖

′ 𝛿𝑡 + 𝜎𝑢

2

𝑇𝐿
𝛿𝑡𝜉𝑝,𝑢𝑖  
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APPLICATION TO A LAGRANGIAN STOCHASTIC PARTICLE DISPERSION MODEL

Generalized Langevin equation

• Stochastic variation 𝛿𝑈p,𝑖
′ , for the 𝑖𝑡ℎ space component, described by the Generalized Langevin Equation1, 

for Gaussian steady isotropic homogeneous turbulence and diagonal Reynolds stress tensor:

➢ 𝑇𝐿 Lagrangian correlation time of the considered particle

➢ 𝜎𝑢 velocity amplitude fluctuation

1Thomson, D. J. (1987). “Criteria for the selection of stochastic models of particle trajectories in turbulent flows”. In: Journal of Fluid Mechanics 180.-1, pp. 529
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APPLICATION TO A LAGRANGIAN STOCHASTIC PARTICLE DISPERSION MODEL

Generalized Langevin equation

• Stochastic variation 𝛿𝑈p,𝑖
′ , for the 𝑖𝑡ℎ space component, described by the Generalized Langevin Equation1, 

for Gaussian steady isotropic homogeneous turbulence and diagonal Reynolds stress tensor:

➢ 𝑇𝐿 Lagrangian correlation time of the considered particle

➢ 𝜎𝑢 velocity amplitude fluctuation

1Thomson, D. J. (1987). “Criteria for the selection of stochastic models of particle trajectories in turbulent flows”. In: Journal of Fluid Mechanics 180.-1, pp. 529

Simplification of the real atmosphere

For the rest of this presentation, work has been done under these 

assumptions, for understanding of the adjoint state method approach
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• Objective: Compute average concentration 𝐶𝑠 𝒙𝒓, 𝑡𝑁 over volume 𝑽𝒓 centred on sensor position 𝒙𝒓 for 𝑡𝑁
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APPLICATION TO A LAGRANGIAN STOCHASTIC PARTICLE DISPERSION MODEL

Concentration computation

𝑠 𝒙𝒔, 𝑞𝑠 , 𝑡0 
𝑽𝒓

Wind speed ഥ𝑼

r (𝒙𝒓)

𝒙

𝑝: 𝑼𝒑(𝑿𝒑, 𝑡𝑁), 𝑀𝑝(𝑡𝑁)

ℎ𝑟



𝐶𝑠 𝒙𝒓, 𝑡𝑁 = 

𝑝=1

𝑁𝑝

𝑀𝑝 𝑡𝑁 𝐾 𝑿𝒑 𝑡𝑁 − 𝒙𝒓, ℎ𝑟

➢ 𝐾 a kernel function, modelling the detector response function of sensor 𝑟

➢ ℎ𝑟 smoothing radius
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2Lorimer, G. S. (1986). “The kernel method for air quality modelling-I. Mathematical foundation”. In: Atmospheric Environment 20-7, pp. 1447-14520

• Density kernel approach2:
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APPLICATION TO A LAGRANGIAN STOCHASTIC PARTICLE DISPERSION MODEL

Concentration computation

𝑠 𝒙𝒔, 𝑞𝑠 , 𝑡0 
𝑽𝒓

Wind speed ഥ𝑼

r (𝒙𝒓)

𝒙

𝑝: 𝑼𝒑(𝑿𝒑, 𝑡𝑁), 𝑀𝑝(𝑡𝑁)

ℎ𝑟

• 𝐶𝑠 considered as particle density function, affected by 𝑀𝑝, over 𝑽𝒓:

the density of particles inside 𝐕𝐫 which have been transported forward in time from source s. 
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APPLICATION TO A LAGRANGIAN STOCHASTIC PARTICLE DISPERSION MODEL

Adjoint computation

ด𝜵𝑱
𝒏𝒎×𝟏

=
𝛛𝒇𝒔

𝟏

𝛛𝒎𝒔

𝑻

𝒏𝒎×𝐧𝟏

ෑ

𝒋=𝟏

𝑵−𝟏
𝛛𝒇𝒔

𝒋+𝟏

𝛛𝒖𝒔
𝒋

𝑻

𝒏𝟏×𝒏𝑵

𝒖𝒔
𝑵 − 𝒅𝑵

𝒅𝑵 ∗ 𝒅𝑵

𝒏𝑵×𝟏

ด𝜵𝑱
𝒏𝒎×𝟏

= 

𝒕=𝟏

𝑵



𝒑=𝟏

𝑵𝒑

𝑶𝒑,𝒔

𝒏𝒎×𝒏𝑵

𝒖𝒔
𝑵 − 𝒅𝑵

𝒅𝑵 ∗ 𝒅𝑵

𝒏𝑵×𝟏

𝑶𝒑,𝒔 = 𝑷𝒑,𝒔
𝑻 ෑ

𝒋=𝟏

𝑵−𝟐

𝑸𝒑,𝒔
𝒋+𝟏𝑻

𝑹𝒑,𝒔
𝑻

𝒏𝒎×𝒏𝑵

with

r (𝒙𝒓)

𝑽𝒓

ℎ𝑟

Wind 

speed ഥ𝑼

𝒙

𝑝: 𝑼𝒑(𝑿𝒑, 𝑡𝑁), 𝑀𝑝(𝑡𝑁)

𝑠 𝒙𝒔, 𝑞𝑠 , 𝑡0 
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APPLICATION TO A LAGRANGIAN STOCHASTIC PARTICLE DISPERSION MODEL

Adjoint computation-Disaggregation step

ด𝜵𝑱
𝒏𝒎×𝟏

=
𝛛𝒇𝒔

𝟏

𝛛𝒎𝒔

𝑻

𝒏𝒎×𝐧𝟏

ෑ

𝒋=𝟏

𝑵−𝟏
𝛛𝒇𝒔

𝒋+𝟏

𝛛𝒖𝒔
𝒋

𝑻

𝒏𝟏×𝒏𝑵

𝒖𝒔
𝑵 − 𝒅𝑵

𝒅𝑵 ∗ 𝒅𝑵

𝒏𝑵×𝟏

ด𝜵𝑱
𝒏𝒎×𝟏

= 

𝒕=𝟏

𝑵



𝒑=𝟏

𝑵𝒑

𝑶𝒑,𝒔

𝒏𝒎×𝒏𝑵

𝒖𝒔
𝑵 − 𝒅𝑵

𝒅𝑵 ∗ 𝒅𝑵

𝒏𝑵×𝟏

𝑶𝒑,𝒔 = 𝑷𝒑,𝒔
𝑻 ෑ

𝒋=𝟏

𝑵−𝟐

𝑸𝒑,𝒔
𝒋+𝟏𝑻

𝑹𝒑,𝒔
𝑻

𝒏𝒎×𝒏𝑵

with

Disaggregation: Instant emission of 𝑁𝑝 particles from source s, at 𝑡0

𝝏𝒇𝒔
𝟏

𝝏𝒎𝒔

𝑻

𝒏𝒎×𝟏

= ต𝑷𝟏,𝒔
𝑻

𝒏𝒎×𝟕

⋯ ต𝑷𝒑,𝒔
𝑻

𝒏𝒎×𝟕

⋯ 𝑷𝑵𝒑,𝒔
𝑻

𝒏𝒎×𝟕

𝑷𝒑,𝒔
𝑻 sensitivity matrix of 𝑝

characteristics (𝑿𝒑, 𝑼𝒑
′ and 

𝑀𝑝) w.r.t. 𝑚𝑠 at 𝑡0

Wind 

speed ഥ𝑼

𝒙

𝑝: 𝑼𝒑(𝑿𝒑, 𝑡𝑁), 𝑀𝑝(𝑡𝑁)

𝑠 𝒙𝒔, 𝑞𝑠 , 𝑡0 
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APPLICATION TO A LAGRANGIAN STOCHASTIC PARTICLE DISPERSION MODEL

Adjoint computation-Transport step

ด𝜵𝑱
𝒏𝒎×𝟏

=
𝛛𝒇𝒔

𝟏

𝛛𝒎𝒔

𝑻

𝒏𝒎×𝐧𝟏

ෑ

𝒋=𝟏

𝑵−𝟏
𝛛𝒇𝒔

𝒋+𝟏

𝛛𝒖𝒔
𝒋

𝑻

𝒏𝟏×𝒏𝑵

𝒖𝒔
𝑵 − 𝒅𝑵

𝒅𝑵 ∗ 𝒅𝑵

𝒏𝑵×𝟏

ด𝜵𝑱
𝒏𝒎×𝟏

= 

𝒕=𝟏

𝑵



𝒑=𝟏

𝑵𝒑

𝑶𝒑,𝒔

𝒏𝒎×𝒏𝑵

𝒖𝒔
𝑵 − 𝒅𝑵

𝒅𝑵 ∗ 𝒅𝑵

𝒏𝑵×𝟏

𝑶𝒑,𝒔 = 𝑷𝒑,𝒔
𝑻 ෑ

𝒋=𝟏

𝑵−𝟐

𝑸𝒑,𝒔
𝒋+𝟏𝑻

𝑹𝒑,𝒔
𝑻

𝒏𝒎×𝒏𝑵

with

Transport / Advection: Advection of particles at each time step 𝛿𝑡, for 𝑁 iterations (Lagrangian stochastic path)

𝝏𝒇𝒔
𝒋+𝟏

𝝏𝒖𝒔
𝒋

𝑻

𝒏𝒋×𝒏𝒋+𝟏

= 𝒅𝒊𝒂𝒈 𝑸𝟏,𝒔
𝒋+𝟏𝑻

,

𝟕×𝟕

⋯ , 𝑸𝒑,𝒔
𝒋+𝟏𝑻

𝟕×𝟕

, ⋯ , 𝑸𝑵𝒑,𝒔
𝒋+𝟏 𝑻

𝟕×𝟕

𝑸𝒑,𝒔
𝒋+𝟏𝑻

sensitivity matrix of 𝑝

characteristics at (𝑗 + 1)𝑡ℎ

iteration w.r.t. 𝑗𝑡ℎ one

Wind 

speed ഥ𝑼

𝒙

𝑝: 𝑼𝒑(𝑿𝒑, 𝑡𝑁), 𝑀𝑝(𝑡𝑁)

𝑠 𝒙𝒔, 𝑞𝑠 , 𝑡0 
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APPLICATION TO A LAGRANGIAN STOCHASTIC PARTICLE DISPERSION MODEL

Adjoint computation-Aggregation step

ด𝜵𝑱
𝒏𝒎×𝟏

=
𝛛𝒇𝒔

𝟏

𝛛𝒎𝒔

𝑻

𝒏𝒎×𝐧𝟏

ෑ

𝒋=𝟏

𝑵−𝟏
𝛛𝒇𝒔

𝒋+𝟏

𝛛𝒖𝒔
𝒋

𝑻

𝒏𝟏×𝒏𝑵

𝒖𝒔
𝑵 − 𝒅𝑵

𝒅𝑵 ∗ 𝒅𝑵

𝒏𝑵×𝟏

ด𝜵𝑱
𝒏𝒎×𝟏

= 

𝒕=𝟏

𝑵



𝒑=𝟏

𝑵𝒑

𝑶𝒑,𝒔

𝒏𝒎×𝒏𝑵

𝒖𝒔
𝑵 − 𝒅𝑵

𝒅𝑵 ∗ 𝒅𝑵

𝒏𝑵×𝟏

𝑶𝒑,𝒔 = 𝑷𝒑,𝒔
𝑻 ෑ

𝒋=𝟏

𝑵−𝟐

𝑸𝒑,𝒔
𝒋+𝟏𝑻

𝑹𝒑,𝒔
𝑻

𝒏𝒎×𝒏𝑵

with

Aggregation: Concentration computation at receiver 𝑟, after 𝑁 iterations

𝝏𝒇𝒔
𝑵

𝝏𝒖𝒔
𝑵−𝟏

𝑻

𝒏𝑵−𝟏×𝒏𝑵

= ต𝑹𝟏,𝒔

𝒏𝑵×𝟕

⋯ ต𝑹𝒑,𝒔

𝒏𝑵×𝟕

⋯ 𝑹𝑵𝒑,𝒔

𝒏𝑵×𝟕

𝑻

𝑹𝒑,𝒔
𝑻 sensitivity matrix of 

concentration of particles at 

sensor 𝑟 w.r.t. 𝑝 characteristics 

at 𝑁𝑡ℎ iteration

r (𝒙𝒓)

𝑽𝒓

ℎ𝑟

Wind 

speed ഥ𝑼

𝒙

𝑝: 𝑼𝒑(𝑿𝒑, 𝑡𝑁), 𝑀𝑝(𝑡𝑁)

𝑠 𝒙𝒔, 𝑞𝑠 , 𝑡0 
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APPLICATION TO A LAGRANGIAN STOCHASTIC PARTICLE DISPERSION MODEL

Adjoint computation

ด𝜵𝑱
𝒏𝒎×𝟏

= 

𝒕=𝟏

𝑵



𝒑=𝟏

𝑵𝒑

𝑶𝒑,𝒔

𝒏𝒎×𝒏𝑵

𝒖𝒔
𝑵 − 𝒅𝑵

𝒅𝑵 ∗ 𝒅𝑵

𝒏𝑵×𝟏

r (𝒙𝒓)

𝑽𝒓

ℎ𝑟

Wind 

speed ഥ𝑼

𝒙

𝑝: 𝑼𝒑(𝑿𝒑, 𝑡𝑁), 𝑀𝑝(𝑡𝑁)

𝑠 𝒙𝒔, 𝑞𝑠 , 𝑡0 

•  𝑶𝒑,𝒔 (size 4 ∗ 𝑛𝑁) computed 

independently for each particle

Allows parallelization, 

reducing restitution time

• Product calculated iteratively 

while forward model running

Avoids particle data storage 

at each time step and 

excessive memory use

• Easy adaptation of 𝑶𝒑,𝒔 for more 

general cases, by summing 

equivalent terms corresponding to 

these cases.



APPLICATION RESULTS ON A NUMERICAL TEST CASE

Case description

17

• Computational domain: test case power plant at the centre of a 600-meter radius disk 

• Continuous release from a point source located 10 meters above the ground 

➢ Steady configuration with Gaussian isotropic homogeneous turbulence and diagonal Reynolds stresses

➢ Neutral atmosphere

• LS model runs dispersion part until convergence to a steady state

H22-065-Salles Loustau Jean-06/13/24



APPLICATION RESULTS ON A NUMERICAL TEST CASE

Adjoint concentration fields
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• Direct concentration field and its adjoint ones to compute ground sensitivities

• Gradients: opposite directions of source displacement reducing difference between model and observations

Allows to approach source true characteristics
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Adjoint concentration fields
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ด𝜵𝑱
𝒏𝒎×𝟏

= 

𝒕=𝟏

𝑵



𝒑=𝟏

𝑵𝒑

𝑶𝒑,𝒔

𝒏𝒎×𝒏𝑵

𝒖𝒔
𝑵 − 𝒅𝑵

𝒅𝑵 ∗ 𝒅𝑵

𝒏𝑵×𝟏

= 𝟏

• Direct concentration field and its adjoint ones to compute ground sensitivities

• Gradients: opposite directions of source displacement reducing difference between model and observations

Allows to approach source true characteristics

Figure 1 - Concentration field with wind flow

(log-scale)

Figure 2 - Concentration variation for a unit 

increase of source flow rate (log-scale)



APPLICATION RESULTS ON A NUMERICAL TEST CASE

Adjoint concentration fields

• Direct concentration field and its adjoint ones to compute ground sensitivities

• Gradients: opposite directions of source displacement reducing difference between model and observations

Allows to approach source true characteristics
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Figure 3 - Concentration variation for a unit 

increase of source X-coordinate (linear scale)

Figure 4 - Concentration variation for a unit 

increase of source Y-coordinate (linear scale)

Figure 1 - Concentration field (log-scale)



CONCLUSION

• Use of the adjoint state method to solve the minimization problem avoids:

➢ Computation of the whole Jacobian matrix 

➢ Dependence on the number of optimization parameters 

Save significant computation time !
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CONCLUSION

• Use of the adjoint state method to solve the minimization problem avoids:

➢ Computation of the whole Jacobian matrix 

➢ Dependence on the number of optimization parameters 

• New application of the adjoint state method, for a LS model (Markovian explicit iterative model)

Save significant computation time !
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Combined use of the adjoint method with a LS model is well suited to source characterization with 

real time constraint in complex industrial sites
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THANK YOU !
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