

National Institute for Public Health and the Environment Ministry of Health, Welfare and Sport

NOVEL METHOD FOR RADIATION DOSE ESTIMATION APPLIED TO DISPERSION SIMULATIONS OF NUCLEAR DETONATIONS

Michiel de Bode

Arjan van Dijk, Astrid Kloosterman, Marte van der Linden, Jasper Tomas

RIVM

michiel.de.bode@rivm.nl

Presentation lay-out

- › Example of dispersion of nuclear weapon fall-out
- › How do we do the radionuclide decay
	- Application of new decay-method
- › Simulation of a nuclear cloud
	- Definition of a nuclear cloud
- › Conclusions

New method – Cocktail-DCC

- › Separate dispersion from nuclear decay characteristics
- › Pre-calculate nuclear decay characteristics
- › Pre-calculate time dependent conversion for dose and activity
- › Not only applicable to radiological cases but also chemical, biological, or ….

Pinpoints with logarithmic intervals

Dose Conversion Coefficients ICRP 119 ICRP 144

Radionuclide decay and dose estimation

- › Radionuclide decay
	- Matrix exponential
	- Logarithmic steps
- › Dose Coefficients
	- ICRP 119
	- ICRP 144

Dose conversion factors (DCCs) from:

Inhalation: Eckerman et al. (2013) (ICRP 119) Kawai et al. (2002) External radiation: EDC-Viewer, conform ICRP Publication 144 (Petoussi-Henss et al., 2020)

Formulae to solve nuclear decay

› Following van Dillen et al. (2019):

› With:

11 June 2024

$$
H(t)=e^{Mt},
$$

 $A_i(t) = \int H_{ij}(t) A_j(0)$

j

› Where matrix M is defined as:

$$
M_{ij} = v_{ij} \lambda_i,
$$

\n
$$
v_{ij} = \text{yield if } i \neq j \qquad \text{(production)}
$$

\n
$$
v_{ij} = -1 \qquad \text{for } i = j \qquad \text{(decay)}
$$

Source: IAEA isotope browser

Adding dispersion

$$
DCC_{air, cocktail}(t) = \sum_{i} DCC_{air,i} \sum_{j} H_{ij}(t)A_{j}(0)
$$

$$
D_{\text{ext,air}}(\boldsymbol{x}, t_1 \to t_2) = \int\limits_{t_1} \sum\limits_i DCC_{\text{ext,air}, i} \rho_i(\boldsymbol{x}, \tau) d\tau
$$

$$
T_{\text{air}}(x,\tau) = \rho_{\text{passive}}(x,\tau) / A_{\text{passive}}(0)
$$

$$
D_{\text{ext},\text{air}}(\mathbf{x}, t_1 \to t_2) = \int_{t_1}^{t_2} DCC_{\text{ext},\text{air},\text{cocktail}}(\tau) T_{\text{air}}(\mathbf{x}, \tau) d\tau
$$

 \rightarrow $\rho_i(x, \tau)$ is concentration of a nuclide or tracer

› The dispersion calculation is reduced to a *single* non-decaying tracer to determine 'thinning coefficients'. $T_{\text{air}}(x, \tau)$ and $T_{\text{ground}}(x, \tau)$.

Radioactivity 1. has same origin in time 2. does not 'unmix'

Source terms of nuclear detonations

- › Kraus and Foster (2014)
	- Selection of 69 nuclides
- › Axelsson et al. (2023)
	- Selection of 129 nuclides
- › Based on Hicks (1982)

Examples of applici^{Bi-209}
 $\frac{10^{-10}}{B_1-214}$

- › Ingrowth of 1 Bq U-238
- \rightarrow $T_{1/2}^{238}U$ = 1.41 \cdot 10¹⁷ sec

Modelling dispersion and dose of fallout from nuclear detonation

- › **Radionuclide composition**
	- initial composition
	- decay and ingrowth of progeny
	- dose calculation for a large number of radionuclides

› **Stabilized cloud characteristics**

- geometry based on yield, height of burst, etc.
- distribution of radioactivity
- particle size distribution

Stabilized cloud characteristics

Radioactivity normally distributed in layers

particle size distribution:

St Ledger (2015) interpretation of Baker (1987)

Particle size distribution

- › Bi-modal normal log-function
	- N1 is condensed particle
	- N2 is dust particles

Possible improvements

- ➢ Multiple-tracer simulations
- ➢ Adding shielding
- ➢ Include chemical transitions

Summary

- ➢ New method for decay chain calculations
	- ➢ Applicable on many different issues
- ➢ Extended modelling for nuclear detonations with method for accurate and fast estimation of radiological effects of fallout (accepted for publication - GitHub)
	- ➢ <https://github.com/rivm-syso/Cocktail-DCC>

References (1)

- › Axelsson, A., Kock, P., Johansson, J., Lindgren, J., Blixt Buhr, A. M., Boson, J., Bäverstam, U., & Karlsson, S. (2023). *2023:05e Radiological Consequences of Fallout from Nuclear Explosions* (2023:05e; p. 64). Swedish Radiation Safety Authority. https://www.stralsakerhetsmyndigheten.se/en/publications/reports/radiation-protection/2023/202305e/
- › Baker, G. H. 3. (1987). *Implications of atmospheric test fallout data for nuclear winter* [Doctoral Thesis]. Air Force Inst. of Tech.
- › Brown, D. A., Chadwick, M. B., Capote, R., Kahler, A. C., Trkov, A., Herman, M. W., Sonzogni, A. A., Danon, Y., Carlson, A. D., Dunn, M., Smith, D. L., Hale, G. M., Arbanas, G., Arcilla, R., Bates, C. R., Beck, B., Becker, B., Brown, F., Casperson, R. J., … Zhu, Y. (2018). ENDF/B-VIII. 0: The 8th major release of the nuclear reaction data library with CIELO-project cross sections, new standards and thermal scattering data. *Nuclear Data Sheets*, *148*, 1–142. https://doi.org/10.1016/j.nds.2018.02.001
- › Dillen, T. van, Dijk, A. van, Kloosterman, A., Russo, F., & Mommaert, C. (2019). Accounting for ingrowth of radioactive progeny in dose assessments: Generic weighting factors for dose coefficients. *Journal of Radiological Protection*, *40*(1), 83. <https://doi.org/10.1088/1361-6498/ab3e9b>
- › Harvey, T., Serduke, F., Edwards, L., & Peters, L. (1992). *KDFOC3: A Nuclear Fallout Assessment Capability* (UCRL-TM-222788; p. 74). Lawrence Livermore National Laboratory.

References (2)

- › Heffter, J. L. (1969). *ARL Fallout Predition Technique* (ESSA Technical Memorandum ERLTM-ARL 13; p. 46).
- › Hicks, H. G. (1982). Calculation of the Concentration of Any Radionuclide Deposited on the Ground by Offsite Fallout from a Nuclear Detonation. *Health Physics*, *42*(5), 585–600.
- › Kraus, T., & Foster, K. (2014). Analysis of Fission and Activation Radionuclides Produced by a Uranium-fueled Nuclear Detonation and Identification of the Top Dose-producing Radionuclides. *Health Physics*, *107*(2), 149–162. https://doi.org/10.1097/HP.0000000000000086
- › St Ledger, J. W. (2015). *User Guide for the Air Force Nuclear Weapons Center Dust Cloud Calculator Version 1.0* (LA-UR-15-29602, 1233240; p. 50). Los Alamos national labratory. https://doi.org/10.2172/1233240
- › Van Dijk, A., de Bode, M., Kloosterman, A., Van der Linden, M., & Tomas, J. M. (2024). Modelling fallout from nuclear weapon detonations: Efficient activity and dose calculation of radionuclides and their progeny. *Health Physics*.

References (DCC)

- › Eckerman, K., Harrison, J., Menzel, H.-G., & Clement, C. H. (2013). ICRP Publication 119: Compendium of Dose Coefficients Based on ICRP Publication 60. *Annals of the ICRP*, *42*(4), 1–130. https://doi.org/10.1016/j.icrp.2013.05.003
- › Kawai, K., Endo, A., & Noguchi, H. (2002). *Dose coefficients for radionuclides produced in high energy proton accelerator facilities Coefficients for radionuclides not listed in ICRP publications* (JAERI-DATA/CODE--2002-013; JAERI, p. 73). Japan Atomic Energy Research Institute. https://jopss.jaea.go.jp/pdfdata/JAERI-Data-Code-2002- 013.pdf
- › Petoussi-Henss, N., Satoh, D., Endo, A., Eckerman, K. F., Bolch, W. E., Hunt, J., Jansen, J. T. M., Kim, C. H., Lee, C., Saito, K., Schlattl, H., Yeom, Y. S., & Yoo, S. J. (2020). ICRP Publication 144: Dose Coefficients for External Exposures to Environmental Sources. *Annals of the ICRP*, *49*(2), 11–145. https://doi.org/10.1177/0146645320906277

Thank you for your attention

National Institute for Public Health and the Environment Ministry of Health, Welfare and Sport

Any questions?

Application in tool IRIS

- › 100 kT yield uranium weapon
	- source term Kraus & Foster (2014), 69 initial nuclides
- › dispersion model NPK-Puff, 48h prognosis
- › instantaneous plume: 1491 puffs
- \rightarrow meteorology: ECMWF-HRES, resolution 0.1 $^{\circ}$
	- 15 levels up to 11.5 km height

flexible in yield, cocktail, output,…

IRIS: Initial Radiological Interpretation Software

Additional model assumptions

- ➢ No shielding (yet), but location and occupancy factor
- ➢ In principle every nuclide can be considered from ENDF-database (DCC is needed for dose calculation)
- ➢ DCCs for groundshine dose are from Petoussi-Hens and ICRP
- ➢ No soil mitigation (with cocktail-DCC), but implicitely in timeintegrated DCC's in traditional dispersion and dose modelling
- \triangleright Deposition wet: bulk,
- ➢ Deposition dry: particle size dependent surface resistance-values combined with other resistances

Outlook: gathering statistics *varying yield, location, and release time*

Exceedance effective dose > 10mSv

11 June 2024 HARMO22