

ENHANCING URBAN AIR POLLUTION MODELLING THROUGH A NETWORK SCIENCE APPROACH

<u>Sofia Fellini</u>

Politecnico di Torino, Department of Environmental and Land Engineering

Tianyang Li, Maarten Van Reeuwijk

Imperial College London, Department of Civil and Environmental Engineering

CFNTRALELYON

Imperial College

London

What is the optimal place to reduce transport emissions?

Photo by Gabriel Bouys/AFP

AIR QUALITY PLANS TO MEET AIR QUALITY STANDARDS IN CITIES

NETWORK APPROACH

WHERE TO IMPOSE TRAFFIC RESTRICTIONS?

Network representation

Dispersion from an emission source

The emission-receptor network

The weight matrix A

Streets \rightarrow Nodes Emission-Impact \rightarrow Links Emission-Impact quantification

The linear assumption

Oke, Timothy R., et al. Urban climates. Cambridge University Press, 2017.

South Kensington case study

46 streets \rightarrow 46 nodes \rightarrow 46x46 matrix **A** and **E**

Average values of NOx emissions for 2021 from traffic simulation software and emission model

Building matrix A

Soulhac, Lionel, et al. "The model SIRANE for atmospheric urban pollutant dispersion; part I, presentation of the model." Atmospheric environment 45.39 (2011): 7379-7395.

Building matrix A

- Inert tracer emission (O3+ Night+ No precipitation)
- Null background concentration
- Neutrally stratified boundary layer → Albedo=1
- External wind U_0 , Φ

• Unit passive scalar emission from street j ($Q_j = 1$) column j is filled ($C_{.j}$)

- 1 h simulation for **each** j to fill the entire matrix $A(U_0, \phi)$
- Simulations are repeated for 8 wind directions

Emission-Impact matrix A

$$\boldsymbol{C} = A\boldsymbol{Q}$$

Building the exposure matrix E

for street Living space for a resident

 $e_i = q p_i C_i$ [g/h]

 $\boldsymbol{e} = q\boldsymbol{p} \circ \boldsymbol{C} = q\boldsymbol{p} \circ A\boldsymbol{Q} = E\boldsymbol{Q}$

 $p_i = 2 \frac{H_i L_i w}{H_F} \frac{n_{TOT}}{2 w \sum_i H_i L_i / H_F} = \frac{H_i L_i}{\sum_i H_i L_i} n_{TOT}$

E

Testing the linear assumption for the inert scenario

- I. Construction of matrix $A(U_0, \Phi)$
- II. Random n emissions Q and find C with **linear model**: C = AQ
- III. Simulations with **SIRANE** for same **Q**
- IV. Comparison of concentrations
- V. Test repeated 20 times for each Φ

Why does the linear assumption hold?

Once matrix $A(U_0, \Phi)$ is built, all the possible emission scenarios in the city can be easily computed!

Wind speed correction

 $Q + U_S W H C_{up} = u_d W L C + U_S W H C$

Longitudinal mean velocity in a street canyon

Vertical exchange velocity at roof level

 $u_d \propto \sigma_w \propto u_*$

$$U_S, u_d \propto u_* \propto U \longrightarrow A \propto \frac{1}{U}$$

$$A(U,\Phi) = \frac{U_0}{U} A_0(\phi)$$

Dispersion matrix for a general wind intensity

Wind speed correction

- I. Construction of one matrix $A_0(\Phi)$ for single wind intensity U_0
- II. Construction of matrix $A(U, \Phi)$ using wind correction:

$$A(U,\Phi) = \frac{U_0}{U} A_0(\phi)$$

III. Random n emissions **Q** and find **C** with **linear model**:

 $\boldsymbol{C} = A\boldsymbol{Q}$

- IV. Simulations with **SIRANE** for same **Q** and simulating different U
- V. Comparison of concentrations
- VI. For each U simulations are **repeated** for different wind directions Φ

SIRANE prescribes a minimum u_*

Once a single matrix $A_0(\Phi)$ is built, all the possible emission scenarios in the city can be easily computed also for different wind intensities!

Reducing network complexity

Simplified matrix Ă

$$\breve{A}_{ij} = \begin{cases} A_{ij}, & \text{if } A_{ij} > \alpha \left(\prod_{1}^{N} A_{ii} \right)^{\frac{1}{N}} \\ 0, & \text{otherwise} \end{cases}$$

Error in reducing complexity

$$\epsilon = \frac{\left\|\boldsymbol{C} - \check{\boldsymbol{C}}\right\|_{2}}{\left\|\boldsymbol{C}\right\|_{2}} = \frac{\left\|\left(\boldsymbol{A} - \check{\boldsymbol{A}}\right)\boldsymbol{Q}\right\|_{2}}{\left\|\boldsymbol{A}\boldsymbol{Q}\right\|_{2}} \approx \frac{\left\|\boldsymbol{A} - \check{\boldsymbol{A}}\right\|_{2}}{\left\|\boldsymbol{A}\right\|_{2}}$$

The number of links in the network can be severely reduced without significantly alter the results.

Perturbation of emission-exposure model

$$e = qp \circ C = qp \circ AQ = EQ$$

 $\delta e = E\delta O$

Total exposure reduction obtained by reducing emission in **street j**

Weak dependence on wind direction since A is diagonally dominant

$$R_{i} \approx \delta Q \ E_{ii} = \delta Q \ q \ p_{i} \ A_{ii} = \delta Q \ q \ p_{i} \frac{U_{0}}{U} A_{0,ii}$$

$$Q_{i} + U_{5,i} W_{i} H_{i} C_{i,up} = u_{d,i} W_{i} L_{i} C_{i} + U_{5,i} W_{i} H_{i} C_{i} \longrightarrow A_{0,ii} = \frac{1}{u_{d} W L}$$

$$R_{i} \approx \delta Q E_{ii} = \frac{U_{0}}{U} \frac{\delta Q \ q \ n_{TOT}}{u_{d0} \sum_{j} H_{j} \ L} \frac{H_{i}}{W_{i}}$$

Mean for ϕ

Consider all the connections except the self-interactions

Strong interconnectivity

Exposure Reduction[mg/h]

0.06	0.125	0.258	0.535	1.108	2.293

Extension to photochemical smog

- Driven by solar radiation
- Due to traffic emissions (NO_x)
- Irritate the eyes and the respiratory tract
- Complex chemical reactions that can be simplified in the $NO_2 NO O_3$ cycle

$$(NO_2 + h\nu \xrightarrow{k_1} NO + O \cdot O \cdot + O_2 \xrightarrow{k_2} O_3 O_3 O_2 + O_3 \xrightarrow{k_3} NO_2 + O_2$$

PHOTOSTATIONARY ASSUMPTION

The **timescales of chemical reactions** are very short compared to the **timescales of turbulent transport**.

Chemical reactions can be applied **after** transport.

Soulhac, Lionel, et al. "Evaluation of Photostationary and Non-Photostationary Operational Models for NOX Pollution in a Street Canyon." Atmospheric Environment 297 (2023): 119589.

Extension to photochemical smog

I. TRANSPORT as PASSIVE SCALARS

$$\widetilde{\boldsymbol{C}}_{NO_2} = A\boldsymbol{Q}_{NO_2},$$
$$\widetilde{\boldsymbol{C}}_{NO} = A\boldsymbol{Q}_{NO},$$
$$\widetilde{\boldsymbol{C}}_{O_3} = A\boldsymbol{Q}_{O_3}$$

II. NULL-CYCLE CHEMISTRY

$$C = f(\widetilde{C}) = g(\widetilde{C}_{NO_X})$$

III. COMPARISON WITH SIRANE

SIMULATIONS FOR DIFFERENT WIND DIRECTIONS AND WIND INTENSITIES (ADOPTING VELOCITY CORRECTION)

Multiple scenarios of chemical pollutant dispersion can be achieved starting from a single transport matrix A

Where to reduce emissions considering chemical reactions?

Perturbation of emission-exposure model

$$e = q\mathbf{p} \circ \mathbf{C} = q\mathbf{p} \circ A\mathbf{Q} = E\mathbf{Q} \longrightarrow e = q\mathbf{p} \circ \mathbf{C} = q\mathbf{p} \circ f(\widetilde{\mathbf{C}}) = q\mathbf{p} \circ f(A\mathbf{Q})$$

$$\delta e = E\delta \mathbf{Q} \longrightarrow \delta e = q\mathbf{p} \circ \delta \mathbf{C} = q\mathbf{p} \circ \delta f(\widetilde{\mathbf{C}}) = q\mathbf{p} \circ \delta f(A\mathbf{Q})$$

 δ

$$\delta \boldsymbol{e} = \boldsymbol{e} - \boldsymbol{e}_{0} \approx q\boldsymbol{p} \circ \frac{\partial f}{\partial \widetilde{\boldsymbol{C}}} A \delta \boldsymbol{Q}$$

$$\delta \boldsymbol{e} = E \delta \boldsymbol{Q} \quad \text{where} \quad E = q\boldsymbol{p} \circ \frac{\partial f}{\partial \widetilde{\boldsymbol{C}}} A$$

$$\frac{\partial f}{\partial \widetilde{\boldsymbol{C}}} = \frac{dg}{d \widetilde{\boldsymbol{C}}_{NO_{X}}} \left((\mathbf{1} - \boldsymbol{a}) \frac{M_{NO}}{M_{NO_{2}}} \boldsymbol{a} \mathbf{0} \right)$$

When the emitted and avected nitrogen oxides (\widetilde{NO}_x) are large, the relation between before-after reaction concentrations is almost linear

Exposure Reduction/Increase[mg/h] to NO_2 , NO, O_3 by decreasing the emission of NO_2 , NO (NO_x)

$$R_j = -\sum_i \delta e_i$$

- Exposure reductions are **linear functions** of the passive scalar case
- A reduction in NO_x emission is responsible for a **concentration increase** of ozone

Conclusions

- I. MULTIPLE SCENARIOS FROM A SINGLE TRANSPORT MATRIX (A)
- II. LINEAR SCALING FOR VELOCITY INTENSITY
- **III. NETWORK REDUCTION**
- IV. OUTDEGREE OF EXPOSURE MATRIX (E) PROVIDES BEST PLACE WHERE TO REDUCE EMISSIONS
- V. EXTENSION TO CHEMISTRY
- VI. SIMPLE AND MODULAR MODEL

and perspectives...

- I. TRANSPORT MATRIX (A) FROM LES SIMULATIONS
- II. TEST FOR DIFFERENT STABILITY CONDITIONS AND CHEMICAL MODELS
- III. BETTER EXPOSURE MODEL