

Physics Informed Neural Networks (PINNs) for rapid contamination dispersion predictions

6 th May 2024

Feng Zhijing, Elisa Y.M. Ang, Tay Bee Kiat, Koh Wai Heng, Peng Cheng Wang

SingaporeTech.edu.sg

Introduction

- Contamination dispersion prediction is vital for assessing disease spread, toxic chemical transmission, and indoor air pollutants, and traditionally relies on computational fluid dynamics (CFD)
- CFD requires intensive computation and precise initial conditions, limiting its use in rapid response scenarios.
- Physics Informed Neural Networks (PINN) can be an alternative. PINNs integrate physical laws into their loss functions, allowing for mesh-free solutions to complex equations.
- We can enhance PINN's efficiency by combining it with strategic sensor data, which improve speed and accuracy without detailed environmental data.

- Input, output and hidden layer
- contain physical equations in the loss function so that we can use both datadriven modelling and domain-specific knowledge

simple 2D scenario

- single release point and a rectangular bluff body placed at the center
- Non-dimensionalized with respect to the x dimension of the obstacle (0.2m)
- The release gas was assumed to have similar properties to air.
- 5 m/s freestream air velocity in the x-direction.

Define neural network model

- Inputs: coordinate points, STT SINGAPORE

Inputs: coordinate points,

using x,y from 2 datasets:

• CFD data

• sensor data

Output: u.v.p.c
	- CFD data
	- sensor data
- Output: u,v,p,c
	- U,V: velocity in two directions
	- P: pressure
	- C: concentration
- Focus on U,V,C while p is used for calculating loss function

Define loss function

- **Loss function contains 2 parts:**
- **Ioss_CFD**: use CFD datasets, calculate Navier Stokes + Scalar Transport equations, Re refers to the Reynolds number and Pe refers to Peclet number. Re=Pe= 67567.57 **OSS function**

tion contains 2 parts:

CFD: use CFD datasets, calculate Navier Stokes + Scalar Transport

yynolds number and Pe refers to Peclet number. Re=Pe= 67567.57

• $e_1 = u_x + v_y = 0$

• $e_2 = uu_x + vu_y + p_x - \frac{1}{Re}(u_{xx} + u_{yy})$ **OSS function**

stion contains 2 parts:

CFD: use CFD datasets, calculate Navier Stokes + Scalar Transport exprodds number and Pe refers to Peclet number. Re=Pe= 67567.57

• $e_1 = u_x + v_y = 0$

• $e_2 = uu_x + vu_y + p_x - \frac{1}{Re}(u_{xx} + u_{yy$ For a stokes + Scalar Transport equations, Re refers to
s to Peclet number. Re=Pe= 67567.57
 $u_{xx} + u_{yy} = 0$
 $v_{xx} + v_{yy} = 0$
 $c_{yy} = 0$
 $c_{yy} = 0$ **OSS function**

tion contains 2 parts:

CFD: use CFD datasets, calculate Navier Stokes + Scalar Transport es

eynolds number and Pe refers to Peclet number. Re=Pe= 67567.57

• $e_1 = u_x + v_y = 0$

• $e_2 = uu_x + vu_y + p_x - \frac{1}{Re}(u_{xx} + u$ culate Navier Stokes + Scalar Transport equations, Re refers to
s to Peclet number. Re=Pe= 67567.57
 $(u_{xx} + u_{yy}) = 0$
 $v_{xx} + v_{yy}) = 0$
 $c_{yy}) = 0$
add 4 losses $MSE_f = e_1 + e_2 + e_3 + e_4$ **ions function**

tion contains 2 parts:

CFD: use CFD datasets, calculate Navier Stokes + Scalar Trans

synolds number and Pe refers to Peclet number. Re=Pe= 67567

• $e_1 = u_x + v_y = 0$

• $e_2 = uu_x + vu_y + p_x - \frac{1}{Re}(u_{xx} + u_{yy}) = 0$
 :

s, calculate Navier Stokes + Scalar Transport equations, Re refers to Peclet number. Re=Pe= 67567.57
 $-\frac{1}{Re}(u_{xx} + u_{yy}) = 0$
 $-\frac{1}{Re}(v_{xx} + v_{yy}) = 0$

and add 4 losses $MSE_f = e_1 + e_2 + e_3 + e_4$

ata, compute mse between predi **Example 10SS function**

oss function contains 2 parts:

• **loss_CFD**: use CFD datasets, calculate Navier Stokes + Scalar Trans

the Reynolds number and Pe refers to Peclet number. Re=Pe= 67567.

• $e_1 = u_x + v_y = 0$

• $e_2 =$ **ISONAL THERE SET CONSTRANT CONSTRANT SERVER S ISONATE ANTION CONTRISTS 2 PATES.**
 ISONATE CFD (**Solers** CRESS calculate Navier Stokes + Scalar Transport the Reynolds number and Pe refers to Peclet number. Re=Pe= 67567.57
 $\cdot e_1 = u_x + v_y = 0$
 $\cdot e_2 = uu_x + vu_y + p_x - \frac{1}{Re}(u$

$$
\bullet \ \ e_1 = u_x + v_y = 0
$$

•
$$
e_2 = uu_x + vu_y + p_x - \frac{1}{Re}(u_{xx} + u_{yy}) = 0
$$

•
$$
e_3 = uv_x + vv_y + p_y - \frac{1}{Re}(v_{xx} + v_{yy}) = 0
$$

•
$$
e_4 = uc_x + vc_y - \frac{1}{Pe}(c_{xx} + c_{yy}) = 0
$$

-
-

$$
MSE_{sensor} = \frac{1}{2M} \sum_{i=1}^{M} \left(\left(U(x_i, y_i) - U_s(x_i, y_i) \right)^2 + \left(V(x_i, y_i) - V_s(x_i, y_i) \right)^2 + \left(C(x_i, y_i) - C_s(x_i, y_i) \right)^2 \right)
$$

Model evaluation metrics: lab

- Transform images from RGB into LAB76 color space
- **Model evaluation metrics: lab**

 Transform images from RGB into LAB76 color space

 What's LAB76 color space: L, a, and b represent the 3 parameters which are used to separate out colours

 Lis for lightness. It goes f
	- L is for lightness. It goes from 0 to 100
	- a is red to green. The negative axis is green and the positive is red.
	-
- b goes from yellow to blue. Blue lies on the negative side and yellow on the positive one.
Metrics lab: calculating the average for Mean Delta E in each pixel, $LAB = \frac{1}{n} \sum_{i=1}^{n} \left(\sqrt{(L_i \hat{L}_i)^2 + (a_i \hat{a}_i)^2 + (b_i \hat{b}_i$
- **Model evaluation metrics: lab**
 Comparison in the average from RGB into LAB76 color space
 Comparison in the average for Mean Delta E in each pixel, we used to separate out colours

Les for lightness. It goes from ye **Solution School S** images.

Model optimization

- Choose one candidate value for each parameter
	- 'initialLearnRate': [0.0005, 0.001],
	- 'decayRate': [0.0005, 0.001],
	- 'numNeurons': [64, 128, 256],
	- 'numLayers': [8, 12, 16, 20]
- Get 2*2*3*4=48 possible parameter combinations
	-
	-

 \blacksquare

 For each combination, run 2k epochs, use sensor configuration 3 as sensor data, randomly choose 10k as CFD data

How to choose candidates for each parameter

- **Before optimization:**
	- numlayers: 11
	- initialLearnRate: 10^-4
	- decay_rate: 0.0001
	- optimizer: Adam
	- batch_size: 1000

- the model performs best when learning rate is 0.0005 and 0.001.
- in subsequent optimizations, we chose these two values as the candidate values for optimizing the parameters.

Example: only optimize learning_rate

LABC

LABu

I ARV

48 combinations in total

LAB sum param

optimization

Model optimization

- The horizontal axis represents the combination number, while the vertical axis represents the LAB values.
-
- {'initialLearnRate': 0.001, 'decayRate': 0.001, 'numNeurons': 128, 'numLayers': 12}
- minLABc: 4.803653

Train model

- **Using 3 sensors and** run each model for 2k epochs (enough for convergence and prevent over-fitting)
- **Loss and LAB plot** using sensor configuration 3

Test model

- Using test data to predict model.
- Test data: within the range of -1<y<1 segment of the entire CFD dataset, which have **few contour of the contour of the contour of the state of the contour of the state.**

The data within the range of -1<y<1 segment of the entire CFD dataset, which have

fewer 0 and more valid data as our aim is to predict
- **test data may have data which is not used for training which can prevent overfitting** problem (CFD randomly choose from entire dataset, not from -1<y<1 segment)

Test model on sensor configurations (1,2,3) **Sensor configurations (1,2,3)**

Sensor configuration 1

Sensor configuration 2

Sensor configuration 3
 Example 1
 Example 1

 $\frac{1}{2}$

 -2

 $-0.75 -$

 $-1.00 -$

1.00

 0.75

 $0.50 -$

 $0.25 -$

 $0.00 -$

 -0.25

 -0.50

 $-0.75 -$

 -1.00

 -4 -2 $\frac{0}{x}$ $\frac{1}{2}$

 -4 -2 \circ \overline{z}

 $\frac{6}{x}$

 $LAB = 2.29e + 01$

 $\frac{1}{2}$

 $-4 -2$

 -0.25

 -0.50

 $-0.75 -$

 $-1.00 -$

 \circ \overline{z}

 -4 -2

- the remaining three columns: predicted values using sensor configuration 1,2,3
- Focus on concentration, so plot c is what we concern
- Performs good when using sensor configuration 3, which means choosing the right location to place sensors is crucial to model performance

LAB for sensor configurations (1,2,3)

250

500

750

1000

Epoch

1250

1500

1750

2000

- Sensor 3 has the lowest LAB
- the closest predicted images compared to the OpenFOAM images
- LAB is a good metrics for this project.

Try reducing sensor

- find the sensor placement rules as well as try to minimize the usage of sensors as much as possible as it can reduce costs
- sensor configuration 3 is the benchmark
- For sensor configuration 4, we remove the long strip sensor in the right side, and make it sparse around the obstacle as well as along the path of the gas.
- 18 • For sensor configuration 5, we remove more sensors around the obstacle.

Test model on sensor configurations (3,4,5)

- sensor 4 still have a good performance on concentration
- sensor 5 can't get good results for this project.

Sensor placement rules

- sensors placement should primarily be concentrated along the path of contamination diffusion (which would depend on gas release location and wind direction) and around obstacles.
- sparse placement, when appropriately implemented, does not compromise accuracy while reducing costs.
- \blacksquare it is essential to avoid excessive sparsity around obstacles.

Try adding sensors

- investigated the impact of the number of sensors on the convergence speed of the model
- Sensor 6: increased the number of sensors within the gas path range
- Sensor 7: randomly choose 10k from **CFD CFD**
- Stop when LABc<4.5 last for 30 consecutive epochs
- Why 4.5: Based on extensive prior investigated the impact of the
number of sensors on the
convergence speed of the model
Sensor 6: increased the number of
sensor 7: randomly choose 10k from
CFD
Stop when LABc<4.5 last for 30
consecutive epochs
Why 4.5: Bas or equal to 4.5, the prediction results for c are quite good.

Test model on sensor configurations (3,6,7)

all 3 sensor configurations can have good performance.

- Sensor 6 has the fastest convergence speed, indicating that appropriately increasing sensors can enhance model velocity, although increasing the cost. • Sensor 6 has the fastest
• Sensor 6 has the fastest
• convergence speed, indicating that
• appropriately increasing sensors
• can enhance model velocity,
• sensor 7 run longer than sensor 6,
• because excessive number of
- because excessive number of sensors cause heightened computational pressure, thus slow down the speed.
- Balance has also to be strike as point sensors can be expensive to install and maintain

Future work

- investigate whether the sensor placement rules we found are applicable to other 2D cases, such as shifting or rotating rectangular obstacles.
- Can we identify a universal sensor placement location for all 2D cases?
- extend the problem to 3D domain and incorporate time series data
- Consider other types of sensors other than point sensors (gas cameras that can create 2D concentration map)

A visible picture of a volcano in Chile is shown above left, followed by a false-colour representation of SO, concentration on the right. This image exemplifies the result tha will be obtained in real-time from the SO₂ camera.

Image source: "Development of an ultra-violet digital camera for volcanic SO₂ imaging" by G.J.S. Bluth, J.M. Shannon, I.M. Watson, A.J. Prata, and V.J. Realmuto.

From: https://resonance.on.ca/gas_camera.htm

