
Physics Informed Neural 
Networks (PINNs) for rapid 
contamination dispersion 
predictions

6th May 2024

Feng Zhijing, Elisa Y.M. Ang, Tay 
Bee Kiat, Koh Wai Heng, Peng 
Cheng Wang



Introduction

 Contamination dispersion prediction is vital for assessing disease spread, toxic chemical 
transmission, and indoor air pollutants, and traditionally relies on computational fluid 
dynamics (CFD)

 CFD requires intensive computation and precise initial conditions, limiting its use in rapid 
response scenarios. 

 Physics Informed Neural Networks (PINN) can be an alternative. PINNs integrate physical 
laws into their loss functions, allowing for mesh-free solutions to complex equations. 

 We can enhance PINN's efficiency by combining it with strategic sensor data, which 
improve speed and accuracy without detailed environmental data. 

2



3

How PINN works

• Input, output and 
hidden layer

• contain physical 
equations in the loss 
function so that we 
can use both data-
driven modelling and 
domain-specific 
knowledge



simple 2D scenario

4

• single release point and a 
rectangular bluff body placed 
at the center

• Non-dimensionalized with 
respect to the x dimension of 
the obstacle (0.2m)

• The release gas was assumed 
to have similar properties to 
air. 

• 5 m/s freestream air velocity 
in the x-direction.

inlet

Rectangular 
obstacle: L=0.2m

Tracer 
release 
(0.1L)



Define neural network model

5

• Inputs: coordinate points, 
using x,y from 2 datasets:
• CFD data
• sensor data

• Output: u,v,p,c
• U,V: velocity in two 

directions
• P: pressure
• C: concentration

• Focus on U,V,C while p is 
used for calculating loss 
function



2 input datasets

6

• CFD data (45k), 
obtained from 
openFoam, 
coordinates 
points with 
u,v,c

• randomly 
choose 10k for 
model

Sensor data

Sensor configuration 3 (78)Sensor configuration 2 (45)Sensor configuration 1 (21)

openFoam

c

u

v



Define loss function

7

 Loss function contains 2 parts:
 loss_CFD: use CFD datasets, calculate Navier Stokes + Scalar Transport equations, Re refers to 

the Reynolds number and Pe refers to Peclet number. Re=Pe= 67567.57
• 𝑒ଵ = 𝑢௫ + 𝑣௬ = 0

• 𝑒ଶ = 𝑢𝑢௫ + 𝑣𝑢௬ + 𝑝௫ −
ଵ

ோ
𝑢௫௫ + 𝑢௬௬ = 0

• 𝑒ଷ = 𝑢𝑣௫ + 𝑣𝑣௬ + 𝑝௬ −
ଵ

ோ
𝑣௫௫ + 𝑣௬௬ = 0

• 𝑒ସ = 𝑢𝑐௫ + 𝑣𝑐௬ −
ଵ


𝑐௫௫ + 𝑐௬௬ = 0

 Calculate mse of 4 equations and add 4 losses

 loss_sensor: using sensor data, compute mse between predict value and true value

 Total loss = loss_CFD + loss_sensor



Model evaluation metrics: lab

8

 Transform images from RGB into LAB76 color space

 What’s LAB76 color space: L, a, and b represent the 3 parameters which are used to separate out colours
 L is for lightness. It goes from 0 to 100

 a is red to green. The negative axis is green and the positive is red.

 b goes from yellow to blue. Blue lies on the negative side and yellow on the positive one.

 Metrics lab: calculating the average for Mean Delta E in each pixel,

 Initially, we use Mean Squared Error (MSE) for assessment. However, we observed its inadequacy in certain 
scenarios, where despite small MSE values, there are substantial differences between predicted and original 
images.

Sensor config 8 is more accurate than 
Sensor config 18

However the MSE for Sensor config 
18 is lower than Sensor config 8. LAB 

provides a better measure



Model optimization

 Do grid search (a method to find best parameters) on 4 parameters:

initialLearnRate, decayRate, numNeurons and numLayers

 Choose one candidate value for each parameter
 'initialLearnRate': [0.0005, 0.001], 
 ‘decayRate’: [0.0005, 0.001],
 'numNeurons': [64, 128, 256],
 'numLayers': [8, 12, 16, 20]

 Get 2*2*3*4=48 possible parameter combinations
 No.1: initialLearnRate = 0.0005, decayRate = 0.0005, numNeurons = 64, numLayers = 8; 
 No 2: initialLearnRate = 0.0005, decayRate = 0.0005, numNeurons = 64, numLayers = 12
 …...

 For each combination, run 2k epochs, use sensor configuration 3 as sensor data,
randomly choose 10k as CFD data

9



How to choose candidates for each parameter

 Do basic optimizations while optimizing one parameter and keeping other parameters 
constant.

 Before optimization:
 numlayers: 11
 initialLearnRate: 10^-4
 decay_rate: 0.0001
 optimizer: Adam
 batch_size: 1000

 openFoam and test plots before optimization:

10

c u v



Example: only optimize learning_rate

11

• the model 
performs best 
when learning 
rate is 0.0005 
and 0.001.

• in subsequent 
optimizations, 
we chose these 
two values as the 
candidate values 
for optimizing the 
parameters.



Parameters matrix

12

Params no.41: Min LABc

48 combinations in total



Model optimization

 The horizontal axis represents the combination number, while the vertical axis 
represents the LAB values. 

 Focus on concentration, find params which has min LABc (combination no.41)

 {'initialLearnRate': 0.001, 'decayRate': 0.001, 'numNeurons': 128, 'numLayers': 12}

 minLABc: 4.803653

13

Params no.41: Min LABc



Train model

14

 Using 3 sensors and 
run each model for 
2k epochs (enough 
for convergence and 
prevent over-fitting)

 Loss and LAB plot 
using sensor 
configuration 3

Number of iterations



Test model

15

 Using test data to predict model.

 Test data: within the range of -1<y<1 segment of the entire CFD dataset, which have 
fewer 0 and more valid data as our aim is to predict the contour plot of the gas

 test data may have data which is not used for training which can prevent overfitting 
problem (CFD randomly choose from entire dataset, not from -1<y<1 segment) 



Test model on sensor configurations (1,2,3)

16

Sensor configuration 1 Sensor configuration 2 Sensor configuration 3

 first column: openFoam
plots, true values

 the remaining three columns: 
predicted values using 
sensor configuration 1,2,3

 Focus on concentration, so 
plot c is what we concern

 Performs good when using 
sensor configuration 3, 
which means choosing the 
right location to place 
sensors is crucial to model 
performance



LAB for sensor configurations (1,2,3)

17

• Sensor 3 has the lowest LAB 
for c,u and v

• the closest predicted images 
compared to the OpenFOAM
images 

• LAB is a good metrics for this 
project. 



Try reducing sensor

18

Sensor configuration 3 Sensor configuration 4 Sensor configuration 5
• find the sensor placement 

rules as well as try to 
minimize the usage of 
sensors as much as 
possible as it can reduce 
costs

• sensor configuration 3 is 
the benchmark 

• For sensor configuration 
4, we remove the long 
strip sensor in the right 
side, and make it sparse 
around the obstacle as 
well as along the path of 
the gas. 

• For sensor configuration 
5, we remove more 
sensors around the 
obstacle.



Test model on sensor configurations (3,4,5)

19

Sensor configuration 3 Sensor configuration 4 Sensor configuration 5

• sensor 4 still have a good 
performance on 
concentration

• sensor 5 can’t get good 
results for this project.



Sensor placement rules

 sensors placement should primarily be concentrated along the path of contamination 
diffusion (which would depend on gas release location and wind direction) and around 
obstacles.

 sparse placement, when appropriately implemented, does not compromise accuracy 
while reducing costs. 

 it is essential to avoid excessive sparsity around obstacles. 

20



Try adding sensors

21

Sensor configuration 3 Sensor configuration 6 (3.7k) Sensor configuration 7 (10k)

• investigated the impact of the 
number of sensors on the 
convergence speed of the model

• Sensor 6: increased the number of 
sensors within the gas path range

• Sensor 7: randomly choose 10k from 
CFD

• Stop when LABc<4.5 last for 30
consecutive epochs

• Why 4.5: Based on extensive prior 
experiments, when LABc is less than 
or equal to 4.5, the prediction 
results for c are quite good.



Test model on sensor configurations (3,6,7)

22

Sensor configuration 3 Sensor configuration 6 (3.7k) Sensor configuration 7 (10k)

all 3 sensor configurations can 
have good performance. 



Compare convergence time

23

• Sensor 6 has the fastest 
convergence speed, indicating that 
appropriately increasing sensors 
can enhance model velocity, 
although increasing the cost. 

• sensor 7 run longer than sensor 6, 
because excessive number of 
sensors cause heightened 
computational pressure, thus slow 
down the speed.

• Balance has also to be strike as 
point sensors can be expensive to 
install and maintain



Future work

 investigate whether the sensor placement rules we found are applicable to other 2D 
cases, such as shifting or rotating rectangular obstacles. 

 Can we identify a universal sensor placement location for all 2D cases?

 extend the problem to 3D domain and incorporate time series data

 Consider other types of sensors other than point sensors (gas cameras that can create 
2D concentration map)

24

From: https://resonance.on.ca/gas_camera.htm


