22nd International Conference on Harmonisation within Atmospheric Dispersion Modelling for Regulatory Purposes, 10-13 June 2024, Pärnu, Estonia

1

Study on flow and turbulence characteristics measured by an on-site meteorological station at a nuclear facility for a real-time atmospheric dispersion simulation

Hiromasa Nakayama¹ and Takaaki Kono²

¹Japan <u>A</u>tomic <u>E</u>nergy <u>A</u>gency, Ibaraki, Japan ²Kanazawa University, Ishikawa, Japan

Background

We developed the local-scale high-resolution atmospheric dispersion and dose assessment system designed based on LES model for safety and consequence assessment of nuclear facilities (Nakayama et al., 2022).

3km (5m grid resolution)

at the nuclear facility

LES calculation conditions

Prescribe the Doppler Sodar of vertical profile of the wind velocities at the inflow boundary under the assumption of horizontal homogeneity and a neutral condition

- Time variation patterns of the air dose rates were successfully simulated in consideration of individual building effects.
- However, the LES computation time was approximately 1.5 times realtime even using 1200 MPI processes on 50 computing nodes by a JAEA supercomputer.

Real-time high-resolution atmospheric dispersion simulation 3

Coupling LES pre-calculations with an on-site meteorological observation Mean wind: U_{DOP} Doppler Sodar wind speed

Objective

However, the turbulence data estimated by the NTM is NOT classified under different atmospheric thermal stability conditions.

Stability class	Condition	
А	highly unstable	
В	moderately unstable	
С	slightly unstable	
D	neutral	
Е	moderately stable	
F	extremely stable	
Pasquill-Gifford chart (Pasquill, 1961)		

Wind tunnel experimental data of vertical plume spreads in different stability classes (Shirakata et al., 2002)

- Evaluate the turbulence standard deviation obtained by on-site remote sensing meteorological observation at a nuclear facility
- Investigate the estimation method for the turbulence based on the improved NTM in consideration of different thermal stability conditions

The NTM estimation of the turbulence standard deviation

5

In IEC61400-1, the representative value of the turbulence standard deviation is given by the 90% quantile for the hub height wind speed U_{hub} .

To apply to atmospheric dispersion simulation, not the 90% quantile but the averaged value of the turbulence standard deviation should be used.

$$\sigma_{ave_l} = I_{ref}(0.75U_{hub} + 3.75)$$

The I_{ref} highly depends on the meteorological conditions and terrain types. We estimate the I_{ref} values at the nuclear facility site <u>under each</u> <u>atmospheric stability class</u> by regression analysis.

The nuclear facility site

 Object
 Object

 Object
 Object

 Object
 Object

 Object
 Object

The Rokkasho Reprocessing Plant

Obtained meteorological data		
Target period	12 th July – 2 nd on January 2007	
Doppler sodar data at a 10- minute time interval	Wind direction and speed	
	Turbulence standard deviation	
	Measurement heights of 50m, 75m, 150m, 250m, and 300m	
Surface meteorological observation	Wind velocities, solar radiation, air temperature, and net radiation ⇒Thermal stability class	

There are many buildings, structures, and tall trees with a height of up to 30m around the site.

Based on ESDU 85020, the terrain description is "wooded country (many trees)" and the roughness length (z_0) is expected to show 0.3m.

ESDU: The recommended data of comprehensive turbulence characteristics of a neutrally-stratified atmospheric boundary layer

3km

Previous evaluation studies on the Doppler Sodar

Main sp	pecifications
Observation method	Triple monostatic
Pulse repetition interval	3-5 second (Obtained time interval: 10-20 second)
Sound beam width	10 deg (The beam diameter is 52 m at 150 m height)

There is a tendency that the longitudinal turbulence intensity σ_l of the Doppler Sodar is overestimated, while the vertical turbulence intensity σ_w is reliable.

Ultrasonic anemometer[m/s] Ultrasonic anemometer [m/s]

• Mitsuta et al. (1989)

Measurement accuracy of σ_w is high especially under higher convective condition because of the problem of the obtained time interval.

Small-scale turbulence under stable conditions is not captured well in principle.

Analysis approach

- **Step1**: Analyze the vertical turbulence standard deviation σ_w
- Step2: Estimate the longitudinal one σ_l from the ratio of σ_l/σ_w under the assumption of uniform shear turbulence

Assumption

- $\cdot \frac{\sigma_w}{\sigma_l} \approx 0.5$ Spectral analysis of turbulent velocity fluctuations (Mann, 1998)
- $\cdot \frac{\sigma_w}{\sigma_l} = 0.74$ Tuning of the ratio σ_w / σ_l to enhance a correlation with the longitudinal one σ_l of ultrasonic anemometer (Ito et al., 1996)

Although it is the simplified method, the reasonable data of the σ_l could be easily obtained from the σ_w measured by the Doppler Sodar.

<u>Measured</u> vertical turbulence intensity σ_w/U at 150m height 9

At class D, the σ_w/U is largely scattered.

The σ_w/U increases with decrease of the mean wind speed at each class.

Estimated longitudinal turbulence intensity σ_l/U at 150m height 10

At class D, the σ_l/U is largely scattered because of the largely scattered σ_w/U . The NTM with I_{ref} generally approximates the scatter of σ_l/U at each class.

The expected value of turbulence intensity I_{ref}

Class Height	Α	В	C	D	E	F	All classes
50m	0.24	0.17	0.17	0.12	0.09	0.09	0.12
75m	0.19	0.12	0.16	0.12	0.08	0.09	0.11
150m (stack height)	0.15	0.11	0.15	0.10	0.07	0.11	0.10
250m	0.15	0.12	0.13	0.09	0.07	0.08	0.09
300m	0.16	0.15	0.13	0.09	0.08	0.07	0.10

- At each stability class, the expected value of turbulence intensity I_{ref} generally increases with height.
- At each height, the I_{ref} decreases from unstable to stable conditions.
- The variation patterns of the I_{ref} values with stability class and height are qualitatively reasonable.

Vertical profiles of the vertical turbulence intensity $\sigma_w(z)/U(z)$ 12

- Classes C and D are similar in magnitude to the experimental data.
- Class F is highly overestimated in comparison to the experimental data.

Vertical profiles of the longitudinal turbulence intensity $\sigma_l(z)/U(z)^3$

• Classes C, D, and E are similar in magnitude to the experimental data.

• Classes B and F are overestimated in comparison to the experimental data.

Stability class	Evaluation
А	Although the turbulence data can be intrinsically estimated
В	by the Doppler Sodar, there is a large difference from the experimental data. It is necessary to compare with more experimental data and continuously evaluate them.
С	The turbulence data is comparable to the experimental
D	data and/or the ESDU recommended data.
E	Although the vertical turbulence data is overestimated a little, the longitudinal one is similar in magnitude to the experimental data.
F	The turbulence data is highly overestimated because small-scale turbulence cannot be captured well in principle.

It is expected that the turbulence data at C, D, and E classes are reliable from the viewpoint of using input data for atmospheric dispersion model.

Conclusion

When using the turbulence data measured by the Doppler Sodar for atmospheric dispersion model as input condition,

- The longitudinal turbulence data σ_l should be estimated from the ratio of σ_w/σ_l under the assumption of uniform shear turbulence.
- For unstable conditions, the turbulence data at class C should be used because that at classes A and B need to be continuously evaluated.
- For a neutral condition of class D, the turbulence data is reliable and usable.
- For stable conditions, the turbulence data at class E should be used because that at class F is highly overestimated.