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Abstract: Machine Learning ML approaches are receiving a lot of interest from the scientific community due to their 

versatility and possibility of combining with the most traditional data processing and modelling techniques. This paper 

concerns the application of ML techniques in constructing temporal profiles of pollutant emissions and estimating 

concentrations and emission rates with high accuracy. The input data include emissions from bottom-up inventory, 

main meteorological parameters (such as precipitation, global solar radiation, temperature, relative humidity, wind 

speed and direction) and concentrations measured at fixed monitoring sites, characterized from very different local 

emission sources. The main assumptions in the interactive ML approach are considering a restricted area around the 

site (obtained by maximum distance in one hour with average wind speed) or moving downwind with respect to the 

emission source, training and testing of Random Forest on the measured concentrations and turbulence parameters and 

with a first guess value of the emission rate from the inventory. The methodology is based on the reiteration of test and 

training of the Random Forest model by correcting hourly emissions for the ratio of measured to estimated 

concentrations. Interesting results have been obtained which show how the performance of the implemented approach 

improves as the number of iterations increases, and how meteorological parameters influence atmospheric 

concentrations and emissions differently, also in relation to the type of monitoring station.  
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INTRODUCTION 

Machine learning approaches (ML) are increasingly used in the field of air quality to distinguish the effects 

deriving from weather conditions from those related to emission sources on atmospheric composition, such 

as alterations in the PM1 composition due to Beijing’s Clean Air Action Plan (Zhang et al., 2020). They 

have also been implemented to assess the variation in NO2, O3, and PM2.5 levels during the COVID-19 

lockdown (Petetin et al., 2020; Wang et al., 2020; Shi et al., 2021). This methodology can be extended to 

study reactive species, such as NH3, including the effects of gas-to-particle conversion on NH3 

concentrations (Lyu et al., 2023). Neural network-based chemical transport models capture complex 

relationships between emissions and atmospheric concentrations. These models have been developed to 

improve the accuracy of emission inventories and to enhance the performance of air quality models. The 

approach involves back-propagation, which adjusts the gradient of the loss function – a measure of the 

deviation between predicted and observed contaminant concentrations (Huang et al., 2021). As known, the 

two main systems for predicting ammonia concentrations include physical methods and machine learning.  

The physical method involves numerous variables and can be applied at the farm level or for specific 

manure management tasks. The CTMs are also defined on a physical and phenomenological approach and 

are utilized on a wider scale. They include chemical reactions, pollutant transport and emission models, 

incorporating data from various inventories. However, they generally simplify information on temporal 

variations in emissions. Annual ammonia emission estimates, as generally provided by emission 

inventories, are disaggregated within CTMs based on average temporary profiles to obtain emissions on an 

hourly base, as required by dispersion models. Only during a subsequent reanalysis phase is it possible to 



recalculate the emissions by comparing the simulation results with the observed data. Machine learning 

techniques have been employed in both CTM combinations (Zhang et al., 2020; Petetin et al., 2020; Wang 

et al., 2020; Shi et al., 2021; Lyu et al., 2023) and single-source resolutions (Hempel et al., 2020).  In a 

recent paper to estimate ammonia concentrations and emissions with high accuracy (Marongiu et al., 2024), 

we introduced a novel approach that iteratively applies Random Forest machine learning to an assumed 

homogenous aerographic region surrounding the measurement sites. The proposed model will be used to 

estimate the ammonia emission trend allowing the validation of annual emission estimates from the 

emission inventory and to obtain temporal profiles useful for CTMs.  In this paper we extend the machine 

learning approach to different dispersion test cases: 

- Case 1: Simple one box case, where ML aims to predict concentrations and emission rates; 

- Case 2: Downwind multiple box model with known source, where ML aims to predict the 

concentration variation over time and distance with a known source and emission rate; 

- Case3: Downwind multiple box model with unknown source, where ML aims to predict the 

variation in time and distance of the concentration and emission rate of the source. 

 

METHODOLOGY 

The methodology that recursively applies Random Forest machine learning assumes that aerographic 

domain around measurement sites is homogeneous to predict concentrations and emissions of ammonia, an 

atmospheric pollutant that causes acidification and eutrophication of soil and water and contributes to 

secondary PM2.5. The recursive implementation of machine learning is described in table 1. According to 

Voulgarakis (2021), the NH3 dispersion model was simplified to a box system, where the main flows that 

determined the potential accumulation of gaseous ammonia were the rate of emission, the chemical 

reactions considered completed shifted to the conversion and the deposition. 

 
Case #1 Case #2 Case #3 

Prediction of hourly varying 

concentrations and emission rates by 

training Random Forest with measured 
atmospheric turbulence parameters and 

concentrations 

Prediction of hourly varying 

concentrations by training Random Forest 

with fixed set of atmospheric turbulence 
parameters and emission rates with 

simulated concentrations by CALPUFF 

Prediction of hourly varying 

concentrations and emission rates by 

training Random Forest with fixed set 
of atmospheric turbulence parameters 

and simulated concentrations by 

CALPUFF 

Simple one-box Downwind unidimensional Downwind unidimensional 
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Figure 1. Definition of the test cases for the application of machine learning. 

 

The methodology was implemented to understand the effects of changes in weather and emission on 

atmospheric ammonia concentrations. The model was trained and tested using hourly measurements of 



ammonia concentrations and atmospheric turbulence parameters. This process started with a constant 

emission scenario. Initially, emissions were calculated based on a detailed bottom-up emission inventory 

at the municipal level. The calculation considered a circular area with a radius of approximately 4 

kilometers centered around the measurement sites. In each iteration, predicted and measured concentrations 

were compared, leading to changes in emissions. The training and testing of the model were then repeated, 

achieving a convergence towards remarkably high performance in predicting ammonia concentrations and 

defining time-varying emission profiles. The validity of this approach has been demonstrated under certain 

conditions: low dispersion of gaseous ammonia far away from sources and high complementary rate in the 

transformation of NH3 in the atmosphere. These types of conditions are well understood in the scientific 

literature (Asman et al., 1998; Renard et al., 2004) and verified in the Po-basin, where wind velocity is 

generally very low, in the range of 1 m/s (Marongiu et al., 2024). In this work we want to investigate the 

application of ML to test more complex dispersion cases and to evaluate if the approach can be able to: 

- Simulate downwind concentrations with known emission rates and meteorological parameters;  

- Simulate downwind concentrations and emission rate of a single source. 

Unlike case number one (table 1), no measured data were available for this type of application and a 

database of previously simulated cases was adopted. Simulations on the atmospheric dispersion of 

pollutants were carried out with CALPUFF (Scire et al., 2000). The downwind maximum concentration 

ratio at different distances from the source is simulated by CALPUFF for more than 5880 different cases. 

Each record of the simulation is obtained by varying the wind intensity in the range between 1 and 5 m/s, 

stability class between A and F, time in the range of 1-8 h for a point source of 1 m diameter, 1 m height, 

temperature 200°C, exit velocity of 5 m/s and emission rate of 1 g/s. For the simulation of case 3 the 

concentrations and emission rates are multiplied from 1 to 10 times to simulate variable and unknown 

emission rates. 

 

 
Figure 2. Comparison between concentrations from measurements or CALPUFF simulations and the predicted ones 

from Machine Learning [g/m3]. 
 

RESULTS 

For case 1 in Figure 2, it is evident that the correlation between measured concentrations (on the x-axis) 

and calculated concentrations (on the y-axis) tends to improve as emissions are iteratively corrected by the 

model. A similar behavior is shown for case 3 while in simulations with known emission rate only one 

iteration step is needed to train and test the random forest (case 2). The prediction performances for 

concentrations are similar for all the investigated cases. The effect on the iteration steps is shown in figure 

3. The progressive correction of emission rates leads to a better fit of the concentration prediction in case 

study number 1. Similar results are shown in case number 3, where downwind concentrations are predicted 

simulated by CALPUFF using machine learning through recursive correction of emission rates. In case 

study number 2, emission rates are known parameters and considered as input for machine learning 

predictions. The model’s concentration predictions showed accuracy and reliability compared to measured 



or simulated values. Furthermore, the relationship between concentrations and calculated emission rates 

aligns with the physical parameters of atmospheric turbulence. 

Figure 3. Simulation with time variation and distance of concentrations [g/m3]. 

 

 
Figure 4. Simulation of concentrations [g/m3] at varying emission rates [g/s] and stability classes. 

 

Figure 4 illustrates, for the three cases investigated, the relationship between the emission rates (on the x-

axis) and the concentrations (on the y-axis). It highlights various atmospheric stability classes, which 

depend on the intensity of solar radiation and wind speed, using different color shades. Specifically, in case 

1, it is evident that a certain emission value corresponds to a range of concentration values rather than a 
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single concentration value. This variability observed in concentration levels is a result of the different 

meteorological conditions that can occur at the same emission level.  

It is interesting to note that the classification of possible cases of concentration levels defined on emission 

rates in case 1 is identified based on solar radiation and wind speed. Higher accumulation in the atmosphere 

is simulated for higher values of thermal radiation and lower wind velocity, which are typically associated 

with stability class A. Data obtained from real-world measurements seem describing similar relationships 

between concentrations and emission rates at the variation of stability classes with a time step of one hour 

and relative short distance from the emission sources. 

 

CONCLUSIONS 

In this paper we have discussed the methodology of applying ML to describe typical physical processes of 

atmospheric dispersion from known and unknown sources. As reported in previous literature, machine 

learning seems to be confirmed as a useful tool for estimating emission rates at high temporal resolution, 

allowing to discriminate high emission episodes from meteorological turbulence effects. All these 

preliminary investigations suggest that ML must be applied considering physical and conceptual constrains 

to preserve the relationship as source-receptors effects. These approaches applied in brutal force can fit 

measurements or other model outputs with very high performances, but the preservation of the key physical 

constrains suggests defining specific performance indicators for evaluating ML approaches. 
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