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Abstract: We analyze data generated from a direct numerical simulation (DNS) of passive scalar dispersion in a regular 

street network comprised of rectangular buildings to characterize concentration fluctuations and their dependence on 

spatial location. The scalar was released from a point source near the ground in an intersection and the forcing wind 

direction was 45 degrees to the street direction. The moments and probability density functions (PDFs) of concentration 

were computed from the DNS data and the empirically derived PDFs were fitted to four commonly used probability 

distributions in urban dispersion applications: gamma, beta, lognormal, and Weibull. The visual fit to the histograms 

was satisfactory for all distributions at most sampled locations. Performance metrics such as FAC2, FB, NMSE, RE, 

and R for percentiles ranging from 75 to 99 (which represent the upper tail of the data distribution), gave results 

consistently within the best-expected range for all distributions, in agreement with prior findings in the literature. No 

single distribution exhibited significantly superior performance. The mean and variance of the distributions computed 

from the data compared well, in general, with those obtained from the theoretical distributions. However, the skewness 

and kurtosis showed large discrepancies, especially for the lognormal distribution. All the distributions modelled the 

empirical PDFs within the plume center better compared to the plume edges. 
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INTRODUCTION 

 

Given the risks associated with pollutant exposure to human health and the environment in urban areas, it 

is essential not only to document and model average concentrations but also to analyze their fluctuations to 

assess, for example, the impact of extreme concentration exposure. This analysis requires knowledge of 

concentration statistics such as variance and higher order statistical moments, and ideally the full 

probability density function (PDF) of concentration. Many previous studies have explored this problem. 

For example, Cassiani et al. (2020) noted that most PDF models proposed for point sources in the literature 

are two-parameter distributions, such as the clipped-normal, gamma, Weibull, lognormal, and beta 

distributions. Recent field and laboratory experiments have leaned towards the gamma distribution. For 

instance, Efthmiou et al. (2016) tested gamma and lognormal distributions for modeling the upper tail of 

concentration distributions from experimental datasets, with the gamma distribution showing superior 

performance and leading to the development of a RANS-gamma model. Efthmiou et al. (2017) used gamma 

and beta distributions to assess the impact of stability conditions and source heights on statistical models 

derived from field experiments. The models captured the effect of stability conditions on the 99th 

percentile, although neither distribution precisely estimated skewness and kurtosis. Overall, beta 

distributions performed better across all conditions. Expanding on previous studies, this study aims to 

characterize concentration fluctuations in an urban area by analyzing moments and probability density 

within an urban street network, using data from direct numerical simulations (DNS). We investigate 

whether position within the plume and the type of street where the measurement point is located 

significantly impact the results. 



 

METHODOLOGY 

 

Direct numerical simulations (DNS) were performed by the University of Reading within the DIPLOS 

(Dispersion of Localized Releases in a Street Network) project (Auerswald et al., 2024). The domain, 

shown in Figure 1a,  consists of a regular array of rectangular buildings elongated in y-direction and with 

an aspect ratio of ℎ/𝐿 =  0.5 and ℎ/𝑤 =  1 , where ℎ is the building height, 𝐿 =  2ℎ is the length and 

𝑊 =  1ℎ is the width. The horizontal extent of the domain is 24ℎ ×  24ℎ and the domain height is 8ℎ. 

The simulation was run in parallel using computational block units of size 1ℎ ×  1ℎ ×  1ℎ each resolved 

by 32 ×  32 ×  32 grid points, with periodic horizontal boundaries. A sponge layer (shown in Figure 1a) 

was included to reduce the scalar concentration to zero in a certain distance around the source and prevent 

the scalar field from re-entering through the periodic boundaries. The simulations were run with a time step 

of ∆𝑡 =  0.00025 𝑇 and data were collected every 20 time steps (0.005 𝑇), with 𝑇 = 1.23 the non-

dimensional time scale. The wind direction was 45 degrees to the street directions. Passive scalars were 

released from a ground source at an intersection, identified in Figure 1a. The releases were continuous, i.e. 

the release time was much larger than the travel time from the source to the receptor, and the sources were 

located at 4 different locations as indicated in Figure 1a. For each release an independent scalar field was 

simulated and its evolution in the time-varying DNS wind field integrated forward in time. The sources 

were implemented in the approximate shape of a circle consisting of 52 grid cells. A constant release rate 

per volume of 𝑞𝑆 = 1000 was prescribed which results in a source rate of 𝑄 = 𝑞𝑆 ⋅ 𝑉 ⋅ 𝑁 = 1.59. 

 

We consider four probability distributions that are most commonly applied in the dispersion literature for 

point sources (Cassiani et al., 2020): 2-parameter gamma, lognormal and Weibull, and 4-parameter beta. 

Originally, the beta distribution is defined within the interval [0, 1], however, since some data may not fall 

within this interval, we include two additional parameters, 'loc' and 'scale', to shift and scale the distribution 

to fit within this interval (SciPy, 2024). The parameters were estimated from the data in each measurement 

point using the maximum likelihood estimation method (MLE), which involves finding the best-fitting 

parameters by minimizing the negative log-likelihood function.  

 

We use the metrics defined by Chang and Hanna (2004) for evaluating the performance of air quality 

models. These metrics include factor of two observations (FAC2), normalized mean squared error (NMSE), 

fractional bias (FB), relative error (RE) and correlation coefficient (R). Efthimiou et al. (2016) and 

Efthimiou et al. (2017) used these measures to evaluate the performance of the statistical models based on 

the gamma, lognormal and beta distributions. Using the same methodology as Efthimiou et al. (2016), we 

calculate the inverses of the cumulative density function (ICDF) from 75th to 99th percentiles of 

concentration, which correspond to the upper tail of the data. We test which model distribution agrees better 

with the empirical distribution from the numerical simulations. 

 

RESULTS 

 

Figure 1b shows the time series of normalized concentration and the associated histogram within the 

stationary part of the time series for three sampling locations. The locations were chosen to display the 

three different shapes of histogram we identified within the domain. The first histogram, shape is 

approximately exponential, which is in general located near the source and in between the edge of the plume 

and outside of it. As expected, both skewness and kurtosis are very large and positive. The second one is 

asymmetrical, and is located in the edge of the plume. The third histogram resembles a bell curve, generally 

located in the center of the plume. In this case, skewness is near 0 and kurtosis is near 3, which are the 

expected values for the normal distribution. This behavior is similar for all height levels analyzed. At the 

point nearest to the source (not showed here), (x, y, z) = (3.5h, 5.5h, 0.125h), the distribution assumes an 

asymmetric shape, resembling a transition between exponential and bell-shaped distributions. 

 

In the areas with an exponential-like histogram shape, we observe a time series with a wide range of 

concentrations, with a higher incidence of zero concentrations and a high incidence of peaks. As we move 

towards the center of the plume and the shape becomes more bell-shaped, the range of concentrations 

decreases, with fewer extreme concentration values and no instances of zero concentration. For the points 



in Figure 1b, the normalized mean concentrations are 8.1e-02, 4.2e-03, and 1.0e-2, respectively. The 

respective variances are 1.6e-02, 4.6e-06, and 3.7e-06, highlighting that in the first case, the mean and 

variance are of the same order of magnitude, indicating large concentration fluctuations. 

 

(a) (b) 

 

 

Figure 1. a) Schematic of the computational domain. The stars represent the source locations of the ensemble members. 

The circles indicate the location of the measurement points of b. The green lines represent the sponge layer for the 

source at 𝑥/ℎ =  3.5 and 𝑦/ℎ =  5.5. b) Stationary time series of concentration and the corresponding histograms and 

PDFs for 2p-gamma, 4p-beta, 2p-lognormal and 2p-Weibull distributions at z = 0.5h and: first row) x = 3.5h, y = 5.5h 

(indicated by a red circle in a); second row) x = 11.5h, y = 11.5h (indicated by a green circle in a); third row) x = 7.5h, 

y = 15.5h (indicated by a blue circle in a). μ, μ2, λ1 and λ2 represent the four first moments mean, variance, skewness 

and kurtosis, respectively, for each data set. 

 

Overall, regardless of the location within the domain, all four distributions visually demonstrated a good fit 

to the data. However, for the points presented in Figure 1b, the Weibull distribution performed less well at 

the asymmetric point, while the gamma, beta, and lognormal distributions exhibited peaks displaced more 

to the left than the histogram in the bell-shaped point. Using the FAC2, FB, NMSE, RE, and R metrics to 

evaluate the performance of the models for the 75th to 99th percentiles of the inverse cumulative density 

function (ICDF), corresponding to the upper tail or the highest concentration values, as done by Efthimiou 

et al. (2016), we find that on average, all metrics are very close to their optimal values, as shown in Table 

1. For FAC2 and R, all distributions resulted in values larger than 0.99. For FB, gamma and Weibull were 

the best, whereas beta showed a positive value, indicating a slight overestimation on average, and lognormal 

was the opposite, showing a slight underestimation. NMSE and RE were near zero for all distributions. 

 

Table 1. General performance of 2p-Gamma, 4p-Beta, 2p-Lognormal and 2p-Weibull distributions for 75th – 99th 

percentiles of the inverse cumulative density function (ICDF) of concentrations. The results represent the mean values 

considering all points within the street network. 

PD FAC2 FB NMSE RE R 

2p-Gamma 0.9952 0.006959 0.03563 0.04537 0.9925 

4p-Beta 0.9956 0.01255 0.05017 0.005957 0.9931 

2p-Lognormal 0.9987 -0.01804 0.04457 0.01443 0.9916 

2p-Weibull 0.9999 0.004904 0.01513 0.00848 0.9920 

 

However, at specific points (see QQ-Plot in Figure 2) often the models deviate from the DNS for extreme 

concentration values. We observe this especially for the lognormal distribution near the source (x = 3.5h, y 

= 5.5h, z = 05.h), which reaches much higher concentration values. In this case, the lognormal distribution 

consistently overestimates the higher concentrations, while the beta and Weibull distributions 



underestimate them. NMSE for this measurement point is 0.043, 0.035, 0.27, and 0.019 for the gamma, 

beta, lognormal, and Weibull distributions, respectively. This confirms that the lognormal performed poorer 

than the other distributions for this case. The kurtosis at this point is very high, of order 104, indicating that 

the lognormal distribution has a tail which is not representative of the data; this could be a limitation when 

using this distribution. The gamma and beta in general give results closest to the DNS values across the 

entire concentration range. 

 

 
Figure 2. QQ-Plot comparing the 75th to 99th percentiles of the ICDF from DNS data and the four probability 

distributions for the same points of Error! Reference source not found. at z = 0.5h and: first column) x = 3.5h, y = 

5.5h; second column) x = 11.5h, y = 11.5h; third column) x = 7.5h, y = 15.5h. 

 

When comparing only the 99th percentile of the ICDF (Table 2), the average performance of the metrics 

deteriorates, particularly for NMSE and the lognormal distribution. This aligns with the observations from 

the QQ-Plot in Figure 2. The significant overestimation by the lognormal distribution at certain 

measurement points resulted in very high NMSE values. While gamma also exhibited large NMSE, FAC2, 

FB, RE, and R performed very well. Overall, the lognormal distribution yielded the poorest average 

performance in modeling the 99th percentile concentrations. 

 

Table 2. General performance of 2p-Gamma, 4p-Beta, 2p-Lognormal and 2p-Weibull distributions for 99th percentiles 

of the ICDF of concentrations. The results represent the mean values considering all points within the plume. 

PD FAC2 FB NMSE RE r 

2p-Gamma 0.9917 0.001576 1.5623 -0.03746 0.9971 

4p-Beta 0.9868 0.04154 0.3037 -0.05305 0.9986 

2p-Lognormal 0.9868 -0.4682 49.8414 0.1069 0.9914 

2p-Weibull 0.9967 0.04084 0.3220 -0.08285 0.9988 

 

Evaluating the models' performance in estimating the first four moments (Figure 3), we observe that the 

mean is estimated very accurately, with only a slight discrepancy observed at certain points for the beta and 

lognormal distributions. However, the discrepancies are larger for the higher moments. For the variance, 

the agreement between DNS and models is good at most sampling points, except in some cases where the 

lognormal distribution significantly overestimates. For skewness, the beta distribution exhibited the best 

performance overall, although it showed a large underestimation for high skewness values. Gamma and 

lognormal distributions tended to overestimate smaller skewness values, with lognormal showing 

particularly significant overestimation for high DNS skewness values. Weibull underestimated skewness 

in many locations. For kurtosis, all models exhibited significant scatter around the ideal agreement line. 

For small kurtosis values (approximately less than 4), the agreement is satisfactory. Gamma, beta and 

Weibull underestimated the highest DNS kurtosis, while lognormal showed the worst performance, with 

significant overestimation of high kurtosis values. 

 

CONCLUSIONS 

 

In this work we have explored the spatial behavior of the concentration probability density functions (PDFs) 

in an urban street network using DNS data and compared with common PDF models. The results will aid 

the development of stochastic street network dispersion models. Overall, the performance of all models for 

the 75th-99th inverse cumulative distribution function (ICDF) of concentrations was satisfactory. However, 



when considering only the 99th percentile, which represents extreme concentrations, the models' 

performance decreased but remained acceptable, except for the lognormal distribution, which exhibited 

significant discrepancies between the model and DNS data. For the first four moments, gamma and beta 

distributions generally demonstrated the best performance. The Weibull distribution also performed well 

for mean and variance. However, for the highest moments, skewness and kurtosis, the models diverged 

considerably from the DNS data for many locations, with the lognormal distribution in particular showing 

very large discrepancies. In summary, it can be concluded that gamma and beta distributions exhibited the 

best overall performance across the entire domain, while the lognormal distribution performed poorly, 

particularly in representing the upper tail, i.e., extreme values. 

 

(a) mean (b) variance 

  

(c) skewness (d) kurtosis 

  
Figure 3. Comparison of the first four moments calculated from the DNS data with those estimated from theoretical 

distributions: a) mean, b) variance, c) skewness and d) kurtosis. 
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