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Abstract: In this paper, a new application of the adjoint state method, to a Lagrangian stochastic (LS) model, in the 
context of atmospheric dispersion of pollutants, is presented. This method allows to solve the minimization problem 
with an efficient computation of the objective function gradient, reducing computation cost. The technique is applied 
to a LS model as it accurately models turbulent dispersion in a complex environment while still providing reasonable 
computational cost. In a first part, the adjoint method is presented, highlighting its benefits. Then the method is extended 
to a LS model, described as a Markovian explicit iterative model with least-square misfit. Finally, test cases are 
discussed.  
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INTRODUCTION 
The characterization of atmospheric pollutant sources in industrial sites is a major concern to improve on-
site safety and to evaluate environmental impact. However, some of these sources are leaks and diffuse 
emissions difficult to identify and quantify, especially in real-time. Inverse modelling is a widespread 
method used to cope with this issue. It relies on sensor measurements downstream of the plume coupled 
with an inversion algorithm, allowing to retrieve source term characteristics, i.e., emission rate and position. 
In the literature, one can find different approaches to obtain these characteristics, as grid search “brute 
force” methods (Ben Salem et al., 2014), consisting in testing a possible source position at every grid point 
and picking the one that best fits the data. Alternatively, one can solve a minimization problem with 
optimization methods classically computing the whole Jacobian matrix of the functional (Gill et al., 1981). 
 
Yet, all these techniques are time-consuming, reducing their applicability when time to solution prevails. 
To address this issue, the adjoint method was developed for the inverse problem theory (Chavent, 1974) to 
efficiently compute the cost function gradient, allowing for fast local optimization techniques (Keats et al., 
2007). Indeed, it avoids computing the whole Jacobian besides being independent of the optimization 
parameter number. Since then, it has been widely used, including in the atmospheric dispersion field, to 
find source term characteristics. A literature review highlights applications to Gaussian and Eulerian models 
(Pudykiewicz, 1998; Giering, 2000) but, to our knowledge, not on a forward LS model, despite being 
suitable for modelling turbulent dispersion in complex environment while providing reasonable 
computational cost. Consequently, this study aims at presenting a new application of this method, to a LS 
model for atmospheric dispersion of pollutants, and its use on some dataset configurations.  



In the first section, the adjoint method is introduced, focusing on its benefits compared to other approaches. 
In the second part, it is extended to a LS model described as a Markovian explicit iterative model with least-
square misfit. At last, some numerical verification results obtained by this application are discussed. 
 
ADJOINT STATE METHOD FOR INVERSE PROBLEM SOLVING 
 
Forward model definition 
A forward model 𝐹௦, depending on model parameters 𝑚௦ and giving the state (output) variable 𝑢௦, defines 
the generally implicit state equation (Plessix, 2006): 

 𝐹௦⏟
ಷ×ଵ

൭ 𝑢௦⏟
ೠ×ଵ

, 𝑚௦ด
×ଵ

൱ = 0⏟
ಷ×ଵ

                    (1) 

𝐹௦, 𝑢௦ and 𝑚௦ are respectively of size 𝑛ி , 𝑛௨ and 𝑛 with 𝑛ி = 𝑛௨ there being as many outputs as equations. 
If an explicit relationship 𝑓௦ exists between 𝑢௦ and 𝑚௦, 𝐹௦ will stand as 𝐹௦(𝑢௦, 𝑚௦) = 𝑢௦ − 𝑓௦(𝑚௦) = 0. In 
the atmospheric dispersion context, 𝐹௦ is a forward transport and dispersion model of pollutants originating 
from a source 𝑠, with 𝑢௦ a concentration vector (e.g. pollutant species concentrations) provided as the 
forward model output and 𝑚௦ a source parameter vector, i.e. source position and strength (𝑛 = 4). 
 
Methodology for inverse problem solving 
Generally, as an explicit analytical inversion of equation (1) does not exist, the inverse problem must be 
considered as a minimization one. The goal is to minimize the difference between the observation data 𝑑, 
i.e. the concentration observations in this context, and the output data 𝑢௦ provided by the forward model 
(modelled concentrations). It amounts to minimize a cost function 𝐽, depending on model parameters 𝑚௦: 

           𝐽⏟
ଵ×ଵ

൭ 𝑚௦ด
×ଵ

൱ = 𝐸⏟
ଵ×ଵ

൭ 𝑢௦⏟
ೠ×ଵ

, 𝑚௦ด
×ଵ

൱                      (2) 

with 𝐸 the error functional of the differences between the model data 𝑢௦ and the observations 𝑑. To find 
the values of 𝑚௦ minimizing the cost function 𝐽, its gradient must be computed. The minimization problem 
in then solved iteratively in practise, updating the 𝑚௦ values at each iteration of the optimization algorithm.  
 
Introduction of the adjoint state equation to compute the gradient 
Classically, the computation of ∇𝐽 requires the whole Jacobian matrix, i.e. the matrix of the derivatives 
relatively to model parameters 𝑚௦. Providing the full expression of the gradient: 

                           ∇𝐽ด
×ଵ

≔ ቀ
ௗ

ௗೞ
ቁ

்

= ቀ
பா

ப௨ೞ

ௗ௨ೞ

ௗೞ
+

பா

பೞ
ቁ

்

= ቀ
ௗ௨ೞ

ௗೞ
ቁ

்

ᇣᇧᇤᇧᇥ
×ೠ

ቀ
డா

డ௨ೞ
ቁ

்

ᇣᇤᇥ
ೠ×ଵ

+ ቀ
பா

பೞ
ቁ

்

ᇣᇤᇥ
×ଵ

                  (3) 

the matrix 
ௗ௨ೞ

ௗೞ
 appears as the bottleneck term as 𝑢௦ does not normally depend explicitly on 𝑚௦, preventing 

the differentiation of 𝑢௦. Moreover, this term, which needs to be computed for each perturbation 𝑑𝑚௦, i.e. 
typically on each grid point, depends on the number of parameters. At the industrial scale, the number of 
grid points can exceed many thousands, leading to large computation cost. The adjoint method proposes an 
alternate, quicker way to compute ∇𝐽. It formally derives adjoint equations from transport models 
(Pudykiewicz, 1998), providing the sensitivity of model output (e.g. concentration) to input variables (e.g. 
emission rate and location). From the state equation (1) specifying the state variable 𝑢௦, the adjoint state 
equation is obtained such that: 

ቀ
డிೞ

డ௨ೞ
ቁ

்

ᇣᇤᇥ
ೠ×ಷ

λ௦⏟
ಷ×ଵ

= ቀ
డா

డ௨ೞ
ቁ

்

ᇣᇤᇥ
ೠ×ଵ

                                  (4) 

specifying the adjoint state 𝜆௦, of dimensions 𝑛ி × 1. Equation (4) is nothing more than a linear system to 
solve, where λ௦ is not a matrix but a vector this time. The adjoint state does not depend on the number of 
optimization parameters anymore, reducing computation time. 
 
Gradient computing 
Once equation (4) is solved, i.e. λ௦ found, the gradient ∇𝐽 determined by each component can be computed: 



∇𝐽ด
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ୢ
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ቁ
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ቁ
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                    (5) 

Extension to a Markovian explicit iterative model with least-square misfit 
To apply the adjoint to a LS model, the method has been extended to an explicit iterative model case, with 

a Markov process and a least-square error functional. In this case, 
డிೞ

డ௨ೞ
 becomes the identity matrix in (4) 

and λ௦ now equals the source term ቀ
డா

డ௨ೞ
ቁ

்

, such that: 

λ௦⏟
ಷ×ଵ

= ቀ
డா

డ௨ೞ
ቁ

்

ᇣᇤᇥ
ೠ×ଵ

= ቀ
௨ೞିௗ

ௗത∗ௗത
ቁᇣᇤᇥ

ೠ×ଵ

                     (6) 

Moreover, 𝐸 does not depend explicitly on 𝑚௦, 
பா

பೞ
= 0 in equation (5). Finally, combining equation (5), 

the derivative of the forward explicit model (1) and equation (6), ∇𝐽 can be computed such that: 

∇𝐽ด
×ଵ

= − ቀ
பிೞ

பೞ
ቁ

்

ᇣᇤᇥ
×ಷ

𝜆௦⏟
ಷ×ଵ

= ቀ
பೞ

பೞ
ቁ

்

ᇣᇤᇥ
×ಷ

ቀ
௨ೞିௗ
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ቁᇣᇤᇥ
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                               (7) 

Considering an iterative model of 𝑁 total iterations, the outputs are now computed by successive 
applications of a sub-model of 𝑓௦. Moreover, in the atmospheric dispersion context, the model includes a 
Markov process. Hence, only the first sub-model 𝑓௦

ଵ depends on 𝑚௦. Besides, the global output vector 𝑢௦ 
is now the concatenation of the 𝑁 sub-vectors 𝑢௦

 . Finally, the global forward model vector 𝐹௦ is defined as: 

           𝐹௦⏟
ೠ×ଵ

൭ 𝑢௦⏟
ೠ×ଵ

, 𝑚௦ด
×ଵ

൱ = [𝑢௦
ଵ − 𝑓௦

ଵ(𝑚௦)]்ᇣᇧᇧᇧᇧᇤᇧᇧᇧᇧᇥ
ଵ×భ

… [𝑢௦
 − 𝑓௦

(𝑢௦
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ଵ×

… [𝑢௦
ே − 𝑓௦

ே(𝑢௦
ேିଵ)]்ᇣᇧᇧᇧᇧᇧᇤᇧᇧᇧᇧᇧᇥ

ଵ×ಿ

൩

்

= 0⏟
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     (8) 

where 𝑢௦
  is the sub-vector of 𝑢௦ of dimension 𝑛, 𝑓௦

  is the corresponding explicit sub-model of 𝑓௦ at the 𝑖௧ 
iteration and 𝑛௨ = ∑ 𝑛

ே
ୀଵ = 𝑛ி . In (8), only the first member [𝑢௦

ଵ − 𝑓௦
ଵ(𝑚௦)]் depends on 𝑚௦. Hence, the 

Jacobian matrix ቀ
డிೞ

డೞ
ቁ

்

is null everywhere except at its terms involving 𝑓௦
ଵ. Besides, under the assumption 

of only final iteration observations, one can solve iteratively the adjoint state equation (4), which is now: 

              

⎣
⎢
⎢
⎢
⎢
⎢
⎢
⎡1 − ቀ

பೞ
మ

ப௨ೞ
భቁ

்

0 ⋯ 0

0 ⋱ − ቀ
பೞ

య

ப௨ೞ
మቁ

்

⋱ ⋮

⋮ ⋱ ⋱ ⋱ 0

⋮  ⋱ ⋱ − ቀ
பೞ

ಿ

ப௨ೞ
ಿషభቁ

்

0 ⋯ ⋯ 0 1 ⎦
⎥
⎥
⎥
⎥
⎥
⎥
⎤

ᇣᇧᇧᇧᇧᇧᇧᇧᇧᇧᇧᇧᇧᇧᇤᇧᇧᇧᇧᇧᇧᇧᇧᇧᇧᇧᇧᇧᇥ
ೠ×ೠ

⎣
⎢
⎢
⎢
⎡

𝜆௦
ଵ

𝜆௦
ଶ

⋮
𝜆௦

ேିଵ

𝜆௦
ே ⎦

⎥
⎥
⎥
⎤

ᇣᇤᇥ
ೠ×ଵ

=

⎣
⎢
⎢
⎢
⎢
⎡

0
0
⋮
0

ቀ
డா

డ௨ೞ
ಿቁ

்

⎦
⎥
⎥
⎥
⎥
⎤

ᇣᇧᇤᇧᇥ
ೠ×ଵ

     (9) 

                           with λ௦
⏟
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Finally, one can compute ∇𝐽, using λ௦
ଵ found solving iteratively equation (9) with equation (10), the sparse 

Jacobian matrix ቀ
డிೞ

డೞ
ቁ

்

with Markov process and the expression of ∇𝐽 in equation (7): 

∇𝐽ด
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భ
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Equation (11) is a clever way to compute the gradient, by the chain rule application. ∇𝐽 is obtained 
computing only a product iteratively, by simply calculating the partial derivatives of 𝑓௦

  iteratively. Neither 
the a priori knowledge of the final output 𝑢௦

ே nor the final observations 𝑑ே are necessary, being only 
required as global product terms. Knowing a priori the number of iterations 𝑁 is not necessary either. 
 
APPLICATION TO A LAGRANGIAN STOCHASTIC PARTICLE DISPERSION MODEL 
To present the methodology, it is applied to a simplified LS model, with Gaussian steady isotropic 
homogeneous turbulence and diagonal Reynolds stresses. A 𝑝 particle originating from an instantaneous 



point source position 𝒙𝒔 is transported at each time step 𝛿𝑡 through a stochastic advection process. Its path 
is described at each time 𝑡 by its Lagrangian position 𝑋, and Lagrangian fluctuating velocity 𝑈,

ᇱ : 

  ൞
𝑋,(𝑡 + 𝛿𝑡) = 𝑋,(𝑡) + ቀ𝑢పഥ ൫𝑿𝒑 , 𝑡൯ + 𝑈, 

ᇱ (𝑡)ቁ  𝛿𝑡 

𝑈,
ᇱ (𝑡 + 𝛿𝑡) = ቀ1 −

ఋ௧

்ಽ
ቁ 𝑈,

ᇱ (𝑡) + 𝜎௨ට
ଶ

்ಽ
𝛿𝜉,௨  

with 𝑈,
ᇱ (𝑡) = 𝜉,௨

(𝑡)𝜎௨ and 𝑋,(𝑡) = 𝑥௦,  (12) 

with 𝑖 the spatial component at time 𝑡. The evolution of 𝑈,
ᇱ  is given by the Langevin stochastic equation 

(Thomson, 1987). 𝑢పഥ  is the mean velocity, while 𝜎௨ is the standard deviation of velocity fluctuations and 
𝑇  the Lagrangian time. 𝛿𝜉,௨  

is a random variable with Gaussian p.d.f of 0 mean value and 𝛿𝑡 variance. 

Moreover, 𝑝 owns a pseudo-mass 𝑀 such that, under the assumption of the absence of decay process: 

    ∀𝑡,  𝑀(𝑡 + 𝛿𝑡) = 𝑀(𝑡)  with  𝑀(𝑡) =
ெೞ

ே
        (13) 

with 𝑀௦ and 𝑁 respectively the mass of pollutant and the number of particles released from the source 𝑠. 
Finally, the average concentration 𝐶௦

ഥ (𝒙𝒓,  𝑡ே) at a sensor position 𝒙𝒓 for final time 𝑡ே is computed using a 
density kernel approach, i.e. as the sum of contributions from all particles in the computational domain: 

𝐶௦
ഥ (𝒙𝒓,  𝑡ே) = ∑ 𝑀(𝑡ே) 𝐾൫𝑿𝒑(𝑡ே) − 𝒙𝒓, ℎ൯

ே

ୀଵ         (14) 

with 𝐾 a kernel function, modelling the detector response function of a sensor 𝑟, acting as a spatial filter 
centred in 𝒙𝒓 and ℎ the smoothing radius of the chosen kernel function. 
 
The adjoint method is applied to the forward LS Markovian explicit iterative model with least-square misfit 

described in the previous section. The matrices 
డೞ

భ

డೞ
, 

డೞ
ೕశభ

డ௨ೞ
ೕ  and 

డೞ
ಿ

డ௨ೞ
ಿషభ in equation (11) then become: 
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ቁ
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         (15) 

             ൬
డೞ

ೕశభ

డ௨ೞ
ೕ ൰

்

ᇣᇧᇤᇧᇥ
ೕ×ೕశభ

= diag ቌ𝑄ଵ,௦
ାଵ்

ᇣᇤᇥ ,

×

⋯ , 𝑄,௦
ାଵ்

ᇣᇤᇥ
×

, ⋯ , 𝑄ே,௦
ାଵ ்

ᇣᇤᇥ
×

ቍ                                  (16) 

ቀ
డೞ

ಿ

డ௨ೞ
ಿషభቁ

்

ᇣᇧᇧᇤᇧᇧᇥ
ಿషభ×ಿ

=  𝑅ଵ,௦ต
ಿ×

⋯ 𝑅,௦ต
ಿ×

⋯ 𝑅ே,௦ถ
ಿ×



்

        (17) 

For each particle 𝑝, the terms 𝑃,௦, 𝑄,௦
ାଵ and 𝑅,௦ correspond, for the LS model, to the sensitivity matrixes 

of, respectively, the seven characteristics of 𝑝 (𝑿𝒑, 𝑼𝒑
ᇱ  and 𝑀) with respect to source parameters 𝑚௦ at 

release time, the characteristics of 𝑝 at the (𝑗 + 1)௧ iteration with respect to the 𝑗௧  one (transport steps), 
and the concentration of particles at the sensor 𝑟 with respect to the characteristics of 𝑝 at iteration 𝑁. The 
gradient ∇𝐽 in equation (11) is now, using equations (15), (16) and (17): 

          ∇𝐽ด
×ଵ

= ቀ∑ ∑ 𝑂,௦
ே

ୀଵ
ே
௧ୀଵ ቁᇣᇧᇧᇧᇧᇤᇧᇧᇧᇧᇥ

×ಿ

ቂ
௨ೞ

ಿିௗಿ
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ಿ×ଵ

  with 𝑂,௦ = 𝑃,௦
் ቂ∏ 𝑄,௦

ାଵ்
ேିଶ
ୀଵ ቃ 𝑅,௦

்
ᇣᇧᇧᇧᇧᇧᇧᇤᇧᇧᇧᇧᇧᇧᇥ

×ಿ

       (18) 

The term 𝑂,௦ in (18), of size 4 ∗ 𝑛ே here, can be computed independently for each particle, allowing 
parallelization hence reducing restitution time. As previously stated, the product is calculated iteratively 
while the forward model is running, which avoids particle data storage at each time step and excessive 
memory use. Lastly, this work deals with observations taken at final iteration only. Yet, in a more general 
case, if measurements occur at multiple times, or with an unsteady source moving and/or emitting at various 
instants, 𝑂,௦ can easily be adapted by summing equivalent terms corresponding to these cases. 
 
APPLICATION RESULTS ON A NUMERICAL TEST CASE 
A CHସ concentration field and its adjoint ones are computed, emitted by a continuous release from a point 
source located 10 meters above the ground, in a steady configuration with Gaussian isotropic homogeneous 
turbulence and diagonal Reynolds stresses, for a neutral atmosphere. The computational domain is a test 
case power plant at the centre of a 600-meter radius disk. The flow part is precomputed from a CFD database 
and the LS model runs the dispersion part (𝛿௧ =  5s) until it converges to a steady state. A smoothing stage 



is applied to the concentration field. This direct field and its adjoint ones like the emission and the Y-
position ones, shown respectively in Figures 1-a), 1-b) and 2, are used to compute sensitivities on the 
ground, using (18). These gradients represent the opposite directions of source displacement which reduce 
the concentration error between the model and the observations, i.e. the cost function, allowing to approach 
source true characteristics. Several results and sensitivity studies will be discussed to illustrate the 
application of the adjoint state method to the LS model. 
 
    a)                                                                      b)  

                     
 

Figure 1. In log. scale: a) Concentration field with wind streamlines; b) Adjoint emission field.  
 

a)                                                                   b) 

   
 

Figure 2. In linear scale: a) Adjoint X-position field; b) Adjoint Y-position field. 
 
CONCLUSION 
In this work, a new application of the adjoint method has been presented for a LS model. Use of the adjoint 
to solve the minimization problem avoids the computation of the whole Jacobian matrix and dependence 
on the number of optimization parameters, saving significant computation time. In this study, the benefits 
of the approach have been highlighted and its use extended to a LS model, well suited to turbulent dispersion 
modelling in a complex environment. Hence, the combined use of the adjoint method with a LS model is 
well suited to source characterization with real time constraint in complex industrial sites. 
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