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Abstract: The use of deposition measurements as a tool in inverse modelling is assessed by applying the technique to 

the case of an undisclosed large release of 106Ru in Eurasia during the autumn of 2017. The atmospheric transport model 

utilized for this investigation is FLEXPART, which is used to calculate the source-receptor sensitivities in backwards-

in-time mode. Inverse modelling is performed with the inverse modelling tool FREAR, which has been amended to be 

compatible with deposition measurements as part of this work. A twin-experiment based on the 106Ru release is 

implemented. Here the atmospheric transport model is ran in forward mode to generate synthetic observations, 

circumventing the impact of measurement and meteorological model errors. These synthetic observations are then used 

in Bayesian- and cost function-based inverse modelling schemes to reconstruct the initial source location. 
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INTRODUCTION 

An accidental release of radioactive material into the atmosphere can present substantial health risks to the 

surrounding population. These health impacts depend upon a range of potentially unknown properties of 

the source, including its location, the release height, the quantity of radioactive material released, and the 

temporal variation of the release. Equipped with measurements and an atmospheric transport model (ATM), 

one can use inverse modelling techniques to reconstruct the unknown source term. Most often used for 

inverse modelling in this context are measurements of radionuclide air concentrations, as detected by 

different detector networks, whether on a regional or global scale. Less commonly used are measurements 

of dry and/or wet deposition. However, deposition measurements offer greater flexibility than air 

concentration measurements, as deposition collection tanks can quickly be placed in ad-hoc locations. Air 

concentration detectors, on the other hand, are typically part of a fixed sparse network of stations. A plume 

of radionuclides could in theory even pass unnoticed between two stations. 

 

In this work, inverse modelling with deposition measurements is assessed by applying the technique to a 

twin-experiment of an undisclosed release of 106Ru in Eurasia in 2017, hereafter referred to as the 

“Ruthenium case”. During October 2017 unusual amounts of 106Ru were detected in most of Europe and 

other parts of the northern hemisphere (Masson et al., 2019). Air concentrations of >150 mBq m–3 and 

deposition values of >100 Bq m–2 were detected. While the detected amounts of radiation were harmless, 

they suggested a considerable release that could cause health effects nearby the point of release. Various 

measurements have been aggregated by Masson et al. (2019): more than 1,000 air concentration 

measurements and more than 100 deposition measurements. Inverse modelling based on the concentration 

measurements points to a source location in the southern Urals. The Federal State Unitary Enterprise 

“Production Association Mayak” in Ozersk, Russia (location shown in Figure 1) has been indicated as most 



consistent with the observations (Masson et al. 2019; Saunier et al. 2019). Only air concentration 

measurements were used directly to reconstruct the source in the former studies. In this work, inverse 

modelling with the use of deposition measurements will be studied. 

 

METHODOLOGY 

Inverse modelling 

Inverse modelling of atmospheric transport and dispersion is most favourable with a linear atmospheric 

transport model, such as FLEXPART (Stohl et al., 2005; Pisso et al., 2019) which is used in this study. A 

linear ATM has field quantities 𝑦𝑖  that scale linearly with the source term 𝑥𝑗: 

 

𝑦𝑖 =∑𝑚𝑖𝑗𝑥𝑗
𝑗

 
(1) 

 

The proportionality factors 𝑚𝑖𝑗 are called the source receptor sensitivities (SRS). The relevant field 

quantities considered here are activity air concentration (expressed in, for example Bq m–3) and deposition 

(expressed in, for example Bq m–2). Each field has its own SRS values 𝑚𝑖𝑗, which can theoretically be 

obtained by both forward- and backward-in-time calculations with FLEXPART (Seibert and Frank, 2004; 

Eckhardt et al., 2017).  The advantage of a linear ATM is that the SRS values only need to be calculated 

once, allowing the generation of field values 𝑦𝑖  for any source term 𝑥𝑗 without the need to re-run the model. 

The general idea behind inverse modelling is then, given a set of observed field values 𝑜𝑖 , to reconstruct 

the source term by finding the best fit of 𝑜𝑖  to 𝑦𝑖  by altering the source term 𝑥𝑗. 

 

Two prominent inverse modelling techniques are a) Bayesian inference and b) cost function optimisation. 

Both techniques are implemented in the inverse modelling tool FREAR (De Meutter et al., 2018; De 

Meutter and Hoffman, 2020; De Meutter et al., 2024). The Bayesian method in FREAR uses a Gaussian 

likelihood and an inverse gamma distribution for the combined model and observation uncertainties. It 

takes into account detections, non-detections, misses and false alarms through the use of Currie detection 

limits. The cost function method is based on minimising a modified version of the geometric variance and 

also takes into account detections and non-detections. 

 

Twin-experiments 

So far FREAR has been able to work exclusively with air concentration measurements. For this work, the 

functionality of FREAR has been extended to also include wet and dry deposition measurements. The 

modified version of FREAR is let loose on the Ruthenium case by way of a twin-experiment. A twin-

experiment consists of inverse modelling given a set of synthetic observations generated by a forward ATM 

calculation. For the source reconstruction we assume the true source location to be unknown. In that case, 

it is most efficient to compute the SRS values with backward-in-time simulations. 

 

A twin-experiment removes measurement and meteorological uncertainties. Still, a perfect match to the 

synthetic observations is not necessarily expected for two reasons. Firstly, if the SRS values are obtained 

through backward-in-time calculations, technical differences in the ATM code will results in slightly 

different values compared to the forward-in-time calculation (Seibert and Frank, 2004; Eckhardt et al., 

2017). Secondly, synthetic observations are generated by integrating the field values over multiple time-

steps, leading to a loss of information. It is worth noting that this loss of information is fundamentally 

different between measurements of air concentration, dry deposition and of wet deposition due to their 

physical nature. Air concentration and dry deposition observations are made locally, and thus give 

information about the plume at that specific location. Wet deposition observations, on the other hand, 

contain radionuclides that were scavenged over the entire precipitating vertical. However, wet deposition 

can also potentially provide more temporal information. Whereas air concentration measurements are 

integrated over some time period (say, 24 hours), wet deposition is only collected in precipitating conditions 

that may only cover part of the observation window (say, tens of minutes). In this case, a wet deposition 

measurement would correspond to a higher temporal resolution compared to air concentration. 

 



Synthetic observations are generated with a forward calculation, given the 106Ru source term of Saunier et 

al. (2019). The deposition measurements aggregated by Masson et al. (2019) are reproduced from the 

forward calculation and used as synthetic observation for the twin-experiment. The deposition data used 

from Masson et al. (2019) was filtered based on time and location, and consists of 18 pure wet deposition 

measurements (rain water) and 13 total deposition measurements (wet and dry deposition). The locations 

of the two types of measurements are shown in Figure 1. In order to compare the loss of information for 

each type of measurement, 18+13=31 synthetic air concentration measurements are generated with the 

same observational parameters (i.e. location and timing) as the deposition measurements. In this way, a 

one-to-one comparison between the different types of measurements can be made. A total of five 

experiments are performed as part of the twin-experiment. These are inverse modelling based on the 

synthetic measurements of 1) wet deposition, 2) total deposition, 3) wet + total deposition, 4) air 

concentration and 5) wet + total deposition + air concentration. This numbering will further be used to refer 

to each experiment. 

 

 
Figure 1. Locations of the 31 deposition measurements (blue dots: 18 wet deposition, red triangles: 13 total (wet + 

dry) deposition) selected from Masson et al. (2019). Some measurement locations overlap. Green star: location of the 

Mayak nuclear installation. 

 

RESULTS 

Figure 2 shows the source localisation using the cost function and Bayesian inference methods, comparing 

all five twin-experiments. The Bayesian method gives a probability map, while the cost function method 

shows the value of the minimised cost for each grid-box, which can be interpreted as a measure for the 

probability. For every experiment, both methods are able to correctly appoint a region of maximal 

probability to or very near to the true source location.  However, the various experiments show significant 

differences in the fraction excluded from the domain. 

 

The minimised cost of the deposition measurements (experiments 1, 2 and 3) exclude similar fractions of 

the domain. However, the total deposition experiment (2) provides a larger area of minimal cost compared 

to the wet deposition experiment (1). The combination of both (3) provides a smaller area still. These 

experiments also show local minima in cost to the west and west-south-west at several hundred and around 

a thousand kilometres from Mayak respectively. The air concentration experiment (4) is most fairly 

compared to experiment 3 (all deposition measurements) since these consist of the same measurement 

locations and observation windows. The cost function is able to pin-point the true source location extremely 

precisely. Further investigation reveals this is mostly explained by the fact that the ratios of synthetic 

concentration values to the (arbitrary, but realistic) minimal detectable quantity (MDQ) of 1 µBq m–3 are 

much higher compared to those of the deposition values (with an MDQ of 0.1 Bq m–2). Due to the use of 

MDQ’s in the cost function (and Bayesian) method, values closer to and below the MDQ give the algorithm 

more freedom to fit the observations. Increasing the concentration MDQ to an unrealistically high value of 

0.1 mBq m–3 results in a minimal cost region similar to that of experiment 3 (not shown). The combination 

of all deposition and concentration measurements (5) provides somewhat worse results than the 

concentration experiment (4), as new regions of low cost appear to the west and west-south-west, similar 

to those in the deposition experiments (1, 2 and 3). The region of lowest cost is still correctly appointed to 

the true source location, however. 

  



The Bayesian inference method is able to exclude a much larger area of the domain for the deposition 

experiments (1, 2 and 3) compared to the cost function method. The wet deposition experiment (1) is 

localised more precisely than the total deposition measurement (2) in terms of both the maximal 

probability’s distance to the true source and the fraction of the domain excluded. The combination of both 

types of deposition measurements (3) gives a comparable results to the wet deposition experiment (1). The 

concentration experiment (4) and all observations experiment (5), akin to the cost function method, are 

extremely accurate, thereby also affirming the fundamental correctness of the inverse modelling techniques. 

 

CONCLUSIONS 

Synthetic detections of the undisclosed release of radioactive 106Ru in 2017 were used as a basis for a case 

study in source reconstruction with deposition measurements. This was done by setting up a twin-

experiment, where synthetic detections were generated from a forward atmospheric transport calculation 

with a source term from the literature. From this, we conclude it is feasible to use deposition measurements 

for source localisation. The Bayesian inference method is able to exclude a larger fraction of the domain 

compared to the cost function optimisation method, as has been observed in previous studies using air 

concentration measurements. However, in practice meteorological and measurement uncertainties may 

mean a larger uncertainty is preferable. Source localisation with air concentration measurements gives 

much more precise results compared to the use of deposition. This is due to the fact that the ratios of 

observed values to minimal detectable values are much higher for the air concentrations than for the 

deposition. As part of future work, we will apply the techniques herein to the real deposition data available 

and also assess the optimised deposition parameters from Van Leuven et al. (2023). 
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Figure 2. Source localisation for the five synthetic twin-experiments with cost function optimisation (red means 

lower cost) and Bayesian inference (red means higher probability). Black circle: location of the Mayak nuclear 

installation. In brackets are the number of measurements that are included in each experiment. 


