REFORMULATION OF DISPERSION EQUATIONS FOR NEAR SURFACE RELEASES

Akula Venkatram¹ , Michelle Snyder² , David Heist² , Vlad Isakov ² , and Steven Perry ²

¹University of California, Riverside, CA ²U.S. EPA, Research Triangle Park, NC

Reformulation motivated by development of a dispersion model for roadway emissions-adverse health effects established

OUTLINE

- Old Equations
- ◆ Formulation
- Comparison with Data
- ◆ New Formulation
- ◆ Performance
- Conclusions
- Sagebrush Project

Vertical Plume Spread

AERMOD uses plume spreads derived from Prairie Grass Experiment conducted in 1956. Based on asymptotic behavior of K(z) and wind speed, U.

.

$$U\frac{d\sigma_z^2}{dx} \sim K(\sigma_z)$$

$$\bar{C}^{\gamma} \sim \frac{Q}{\sigma_z U}$$

$$\sigma_z U \sim u_* x$$
 Neutral
$$\sim u_* \frac{x^2}{|L|}$$
 Unstable
$$\sim u_* L^{1/3} x^{2/3}$$
 Stable

Vertical Plume Spread

Prairie Grass Data:

http://envs.au.dk/en/knowledge/air/models/background/ /omlprairie/excelprairie/

$$\sigma_Z = \sqrt{\frac{2}{\pi}} \frac{u_* x}{U} \left(1 + 0.7 \frac{x}{L} \right)^{-\frac{1}{3}} \quad for \ L > 0$$

and

$$\sigma_{z} = \sqrt{\frac{2}{\pi}} \frac{u_{*}x}{U} \left(1 + 0.006 \left(\frac{x}{|L|}\right)^{2}\right)^{\frac{1}{2}} for L < 0.$$

Horizontal Plume Spread

AERMOD uses plume spreads derived from Prairie Grass Experiment conducted in 1956

$$\sigma_{y} = \frac{\sigma_{v} X}{U} (1 + 78 X)^{-0.3}$$

where

$$X = \frac{\sigma_{v} X}{U z_{i}}$$

Which Wind Speed?

Solved iteratively

$$\sigma_{z} = f(x, u_{*}, L, U(\bar{z}))$$

$$\frac{\bar{z}}{\sigma_z} = \sqrt{\frac{2}{\pi}} exp \left[-\frac{1}{2} \left(\frac{z_s}{\sigma_z} \right)^2 \right] + erf \left(\frac{z_s}{\sqrt{2}\sigma_z} \right)$$

Horizontal Spread (Old Equations)

Comparison with PG Observations

Idaho Falls Experiment -2008

- ullet Two 54 m line sources of SF_6 , one behind barrier and the other in open terrain
- 5 tests, lasting 3 hours each broken up into 15 minute segments
- 4 cases: neutral, slightly stable, very stable, very unstable

Comparison using PG curves

1: Neutral

2: Very unstable

3: Slightly stable 5: Very stable

Modified Vertical Plume Spread

$$U\sigma_z \frac{d\sigma_z}{dx} \sim K(\sigma_z)$$

$$\sigma_z \sim \frac{u_* x}{U(\sigma_z)}$$
 Neutral

$$\sigma_{z} \sim \left(\frac{u_{\star}}{U}\right)^{2} \frac{x^{2}}{|L|} \qquad Unstable$$

$$\sigma_{z} \sim L^{2/3} x^{1/3} \qquad Stable$$

$$\sigma_z \sim L^{2/3} x^{1/3}$$
 Stable

Horizontal Plume Spread

$$\frac{d\sigma_{y}}{dx} \sim \frac{\sigma_{v}}{U} = \frac{\sigma_{v}}{u_{*}} \left(\frac{u_{*}}{U}\right)$$
 Eckman, 1994

$$\sigma_{y} \sim \frac{\sigma_{v}}{u_{*}} \sigma_{z}$$
 Neutral

 $\sigma_{y} \sim \frac{\sigma_{v}}{u_{*}} \left(\sigma_{z} \left| L \right| \right)^{1/2}$ Unstable

 $\sigma_{y} \sim \frac{\sigma_{v}}{u_{*}} \frac{\sigma_{z}^{2}}{L}$ Stable

Reformulation

Stable Conditions

$$\sigma_z = 0.64 \frac{u_*}{U} x \left(1 + 3 \frac{u_*}{U} \left(\frac{x}{L} \right)^{2/3} \right)^{-1}$$

$$\sigma_{y} = 1.6 \frac{\sigma_{v}}{u_{\star}} \sigma_{z} \left(1 + 1.5 \frac{\sigma_{z}}{L} \right)$$

Unstable Conditions

$$\sigma_{z} = 0.64 \frac{u_{\star}}{U} \times \left(1 + 1.5 \left(\frac{u_{\star}}{U} \frac{x}{|L|}\right)\right)$$

$$\sigma_{y} = 1.6 \frac{\sigma_{v}}{u_{\star}} \sigma_{z} \left(1 + 0.5 \frac{\sigma_{z}}{|\mathcal{L}|} \right)^{-1/2}$$

Prairie Grass Data

Horizontal Spread Prairie Grass Data

Concentrations Idaho Falls Data

Spatial Gradients Idaho Falls Data

Conclusions

- Reformulations are consistent with theory
- Describes data from both Prairie
 Grass and Idaho Falls
- Plume spreads and wind speed are coupled and thus need to be consistent with each other

Project Sagebrush Rationale (Why?)

- Recent field tracer experiments indicate discrepancies with fundamental tracer experiments, e.g., Project Prairie Grass
- Recommendations to redo Project Prairie
 Grass go back at least 20 years
- Modern equipment
 - Real-time analyzers
 - Direct measurement of atmospheric stability
- Multiple nonreactive non-depositing tracers

Project Prairie Grass and Project Sagebrush Comparison (What?)

Project Prairie Grass

- Number of experiments: 70
- Time of year: summer
- Single tracer: SO₂
- Release type: point
- Samplers: 600; 10 minutes
- Domain: to 800 m
 - 50, 100, 200, 400, 800 m
- Vertical: 6-17.5m towers on 100 m arc
- Met. instruments: cup and vanes

Project Sagebrush

- Number of experiments: multiple seasons, multiple years
- Multiple Tracers: SF₆, PDCB, PMCH, m-PDCH
- Release type: point, line, stack
- Samplers: 135 bag samplers (12 bags each); 5-999 minutes; and 10 real-time analyzers
- Domain: to 1600 m and more
 - 25, 50, 100, 200, 400, 800, 1600 m, +m
- Vertical: aircraft and towers
- Met. instruments: 3-d sonic anemometers, fast response IRGA

NOAA/INL Tracer Test Facility (Where?)

PSB Participants (Who?)

Kirk Clawson - NOAA Federal kirk.clawson@noaa.gov>

- Field Deployment Collaborators
 - NOAA ARL Field Research Division
 - NOAA ARL Atmospheric Turbulence and Diffusion Division
 - University of Tennessee Space Institute
- Data Analysis Collaborators
 - U.S. Environmental Protection Agency
 - University of California-Riverside
- Additional Collaborators Are Invited to Participate