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 Deliberate or accidental atmospheric release from a near 

ground point source upwind or in a complex urban 

environment. 

 

 

 

 

 Prediction of individual exposure at a time interval Δτ 

downwind the source (Sensor 1, 2). 

 Individual exposure = Dosage 

 at a time interval Δτ. 
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The problem 
Stochastic nature of turbulence 

 

Concentration variability 

 

Conclusion: 

The prediction of actual concentration/dosage 

downwind the source is practically impossible. 

 

Maximum individual exposure/expected dosage: 

       Cmax(Δτ) is the peak 

      time averaged  

      concentration. 
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Predicting maximum dosage 

 

 

 

 

The Probabilistic Models 
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Atmospheric 
Dispersion Model 

Mean Concentration 

Concentration 
Variance 

Intermittency factor 

Probability Density 
Function 

Peak 
Concentration/Dosage 

(predetermined 
confidence limit) 

Research Gamma Lognormal Weibull Exponential 
Chopped 

normal 

Lung et al., (1992) x x x 

Mylne & Mason 

(1991) 
x x 

Yee (1990) x x x 

Yee et al., (1993) x x x x x 

Gailis et al., (2007) x x 

Gailis & Hill 

(2006) 
x x x 
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Lognormal: 
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Limits of probabilistic method 

• There is not a common well known distribution that can be used 

to describe the concentration in all the locations. 

 

 

 

 

 

 

2. Results sensitive to the confidence interval 95%, 99%, 99.8%, 

99.98%.  

 For 100% Cmax → ∞ 
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Predicting maximum dosage 

• Turbulence autocorrelation time scale 

• Autocorrelation function 

• Mean value:     Fluctuation:      Variance:  

• Fluctuation intensity: 

• β and n are parameters that are estimated 

experimentally FLADIS: β = 1.5, n = 0.3 

 MUST: β = 1.64, n = 0. 3 
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The Deterministic Models (Bartzis et al., 2008) 
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The prediction requirements 
 
 The mean concentration 

 The concentration variance 

 The turbulent time scales TC                                             

 

 The simplest and practical approach for complex 

terrains 

 CFD RANS models 

 Two-equation turbulent closure 
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Transport equation for 

concentration variance 
(using the concept of eddy 

viscosity/diffusivity) 

Turbulent concentration fluxes: 
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The dissipation rate of 

concentration variance 

The usual approach → algebraic modelling (Csanady, 1967): 

 

 

 

Tdc = dissipation time scale of concentration variance 
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The dissipation rate of 

concentration variance:   
A new approach (Efthimiou & Bartzis, 2011) 

    Assumptions: 

    1. The time scales Tdc and TC are  

   analogous variables. 

 2. The time scales Tdc and TC depends on the pollutant travel time. 

 3. The time scales Tdc∞ and TC∞ correspond to full mixing 

conditions and depends on the flow turbulent characteristics. 

The new approach has been tested until now with the k-ζ model 

(Bartzis, 2005). 

In the present study: Incorporation of the widely used k-ε model 

(Launder, B. E. and D. B. Spalding, 1974) to the new methodology. 
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The autocorrelation time scale TC 

Experimental evidence: TC is highly correlated with the 

pollutant travel time especially near the source. 
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Pollutant travel time 
Radioactive tracer method 

Remarks: 

1. In Eulerian CFD models the estimation of the pollutant travel time is not 

direct. 

2. The use of the physical law x/U is questionable in complex urban 

environments. 

Radioactive tracer method 

Two tracers are released simultaneously from the same source with the 

same experimental conditions. 

One tracer is considered passive (C0) while the other is considered 

radioactive (C) with a decay constant λ (s-1). 

Pollutant travel time: 
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The time scale TC∞ (full mixing) 
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k-ζ model (Efthimiou et al., 2011) 

 

Standard k-ε model (Andronopoulos et al., 

2002, Milliez and Carissimo, 2008) 
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ch = 1.0 

𝑇𝐶∞ = 𝑘𝜀−1 



The time scale Tdc∞ (full mixing) 
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k-ζ model: 

Efthimiou et al., 2011:  cdc = 3.05 

 

Standard k-ε model: 

Andronopoulos et al., 2002:   cdc = 0.8 

 Milliez and Carissimo, 2008:  cdc = 1.0 

14 

𝑇𝑑𝑐∞ = 𝑐𝑑𝑐𝑇𝐶∞  



15 

 40 locations on 4 horizontal  

 sampling lines (at z = 1.6 m) 

  

 8 sensors on 32-m central tower 

 (at z = 1, 2, 4, 6, 8, 10, 12, 16 m)   

 

 6 sensors on each of 6-m tower at 

 A, B, C, D (at z = 1, 2, 3, 4, 5, 5.9 m) 

Approach flow 

The MUST experiment (Yee & 

Biltoft, 2004) 
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The selected validation trials 
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Experimental parameters 
MUST  

Trial 11 Trial 12 

Date 25/9/2001 25/9/2001 

Hour of emission 18:29:00 18:49:00 

Tracer Propylene (C3H6) 

Emission duration 15 min  

Emission rate 0.00457 kg s-1  

Source area 0.00196 m2  

Source height  1.8 m  0.15 m  

Reference velocity 7.93 m s-1  7.26 m s-1  

Wind direction -40.54ο  -41.23ο  

Mean atmospheric temperature 304.94 K  304.32 K  

Roughness height 0.127 m  0.086 m  

Manipulation time period 200 s  

Friction velocity 0.92 m s-1  0.76 m s-1  

Monin-Obukhov length -28000 m  2500 m  

Exponential exponent 0.25 0.23 

The simulations are performed with the CFD code ADREA (Bartzis et al., 1991). 
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Mean concentration results (I) 

Trial 11 
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Mean concentration results (II) 
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Validation metrics 

FAC2 FB NMSE 

Near ground measurements 

Trial 11 (k-ζ / k-ε) 0.60 / 0.43 -0.08 / 0.52 0.35 / 0.77 

Trial 12 (k-ζ / k-ε) 0.89 / 0.52 -0.22 / 0.39 0.33 / 0.53 

Total measurements 

Trial 11 (k-ζ / k-ε) 0.48 / 0.44 -0.24 / 0.11 0.69 / 0.73 

Trial 12 (k-ζ / k-ε) 0.70 / 0.46 -0.19 / 0.12 0.42 / 0.53 

Factor of two of 

observations 
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Quality acceptance 

criteria (Schatzmann 

et al., 2010) 

|FB| < 0.3

NMSE < 4

FAC2 > 0.5
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Concentration standard deviation 

results (I) 
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Selection of the parameter cdc: 

 

Sensitivity study on the influence of this parameter to the results has 

been performed for both Trials using the k-ε model. 

 

First simulation: cdc = 0.8 → underprediction (e.g. for Trial 11 and for 

all sensors: FAC2 = 5.7%, NMSE = 2.49, FB = 1.03). 

 

Best performance: cdc = 1.7. 

19 

𝑇𝑑𝑐∞ = 𝑐𝑑𝑐𝑇𝐶∞  



Concentration standard deviation 

results (II) 

Trial 11 
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Trial 12 
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Concentration standard deviation 

results (III) 
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Factor of two of 

observations 
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Quality acceptance 

criteria (Schatzmann 

et al., 2010) 

|FB| < 0.3

NMSE < 4

FAC2 > 0.5

Validation metrics 

FAC2 FB NMSE 

Near ground measurements 

Trial 11 (k-ζ / k-ε) 0.63 / 0.60 0.21 / 0.37 0.22 / 0.35 

Trial 12 (k-ζ / k-ε) 0.82 / 0.67 0.075 / 0.19 0.088 / 0.17 

Total measurements 

Trial 11 (k-ζ / k-ε) 0.59 / 0.69 -0.33 / 0.12 1.39 / 0.26 

Trial 12 (k-ζ / k-ε) 0.76 / 0.68 -0.35 / -0.047 1.20 / 0.34 

21 



Individual exposure 

Trial 11 
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Trial 12 
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Conclusions 
 
 The proposed approach on concentration time scale dependency on pollutant 

travel time seems to be a valid approximation in predicting plume dispersion 

from a point source in CFD RANS modeling using the k-ζ and standard k-ε 

turbulence models. 

 

 In case of k-ε model a new value for cdc 1.7 allowed a good insight into the 

fluctuation results. 

 

 The validation study was performed against MUST field experimental data 

under neutral conditions. 

 

 An overall better performance for concentration mean and standard deviation 

was observed when the k-ζ model was used. 

 

 More validation and intercomparison studies are planned by the authors. 
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