

Laboratoire de Mécanique et d'Énergétique d'Evry

14TH International Conference on Harmonization within Atmospheric Dispersion Modeling for Regulatory Purposes

Kos Island, Greece, 2-6 October 2011

Two methods to estimate the standard deviation of lateral dispersion in low wind stable conditions

By

Hambaliou Balde¹, Grégory Turbelin¹, Pierre Ngae¹

¹Laboratoire de Mécanique et d'Energétique d'Evry (LMEE), Université d'Evry Val d'Essonne, France

- Problematic and objectives
- **Experimental site and wind model**
- Methods to estimate the standard deviation of lateral dispersion

Problematic

□ In low wind speeds conditions :

- The natural low wind speed is typically non-stationary
- Large horizontal wind speed oscillations, commonly known as meandering (Anfossi et al., 2005), can be observed
- Standard deviation, in the crosswind direction, may significantly differs from the expressions commonly found in the literature

Objectives

- Two methods have been locally developed to obtain suitable dispersion coefficients, during low wind and stable conditions, by using :
 - > Wind velocities recorded with an ultrasonic anemometer
 - > A **wind model** adapted to non-stationary conditions
 - Analysis techniques, such as wavelets or Empirical Mode Decomposition (EMD), extensively employed to analyze wind speed oscillations in strong wind conditions

Plan

Problematic and objectives

Experimental site and wind model

Methods to estimate the standard deviation of lateral dispersion

Results and Conclusions

Experimental site and wind model

Experimental site

- South of the Paris region (Evry, France)
- ➤Typical sub-urban site
- Instruments located on the top of a low rise wide industrial building (11 meters high)

Experimental site and wind model

Instruments

The measurements were performed over 16 months, both with an ultrasonic anemometer, at 20 Hz, and a weather station, at 1 Hz

Experimental site and wind model Wind Model

$\vec{u}(M,t) = \vec{U}(M,t) + \vec{u}'(M,t) \qquad \text{With} \qquad \vec{U}(M,t) = \vec{\overline{U}}(M,t) + \vec{\overline{U}}(M,t) + \vec{\overline{U}}(M,t)$ $\vec{u}(M,t) = \vec{\overline{U}}(M,t) + \vec{\overline{U}}(M,t) + \vec{\overline{U}}(M,t) + \vec{u}'(M,t)$

Overall time-mean + Low frequency fluctuations + Turbulent fluctuations

 Longitudinal component, in the mean wind direction:

 Lateral component, in the crosswind direction :

$$u(M,t) = \overline{u}(M) + \widetilde{u}(M,t) + u'(M,t)$$

 $v(M,t) = \tilde{v}(M,t) + v'(M,t)$

The main difficulty is to extract the slow time-varying component

Plan

Problematic and objectives
Experimental site and wind model

Methods to estimate the standard deviation of lateral dispersion

Method based on the generation of random particle trajectories

Method based on the experimental analysis of velocity fluctuations

Methods to estimate the horizontal dispersion

Method based on the Generation of Random Particle Trajectories (GRPT)

- Representative local low wind velocity records are wavelet transformed using Daubechies (DB4) wavelets
 - This results in sets of wavelet coefficients characteristic of the time-scale structure of the natural wind
- Random signals, statistically similar to the original ones (with the same energy), are obtained by inverse wavelet transform
 - The original wavelet coefficients are kept at each scales, however, their positions in time are randomly permuted before performing the inverse wavelet transform

Methods to estimate the horizontal dispersion

Method based on the GRPT

>Time integrations of the generated velocities led to trajectories

$$y_k = \sum_{i=0}^k v_i \Delta t$$

 $\succ \sigma_y(x)$ is gradually constructed by computing j trajectories, until the mean trajectory is aligned in the x-axis (y=o)

Methods to estimate the horizontal dispersion

Method based on the Experimental Analysis of Velocity Fluctuations (EAVF)

- Empirical Mode Decomposition (EMD) is used to separate the organized and turbulent lateral fluctuations
- > Variance of the organized fluctuations is evaluated over T_s (the sampling time duration)
- > Variance of the turbulent fluctuations is evaluated over N designated time intervals of T seconds, $N=int(T_s/T)$

> Variance of the lateral wind speed component can be approximated by

$$\sigma_{v,T_s}^2 = \frac{1}{N} \sum_{i=1}^N \sigma_{v_i,T}^2 + \sigma_{\tilde{v},T_s}^2$$

> Lateral standard deviation can be computed by using the Taylor's theorem

$$\sigma_y^2(T_s) = 2\sigma_{v,T_s}^2T_LT_s$$

Plan

Problematic and objectives

Experimental site and wind model

Methods to estimate the standard deviation of lateral dispersion

Results

- With the GRPT method, if the signals are generated by omitting the high frequency terms (by setting the wavelet coefficients related to those particular fluctuations to zero):
 - > the overall trajectories are very similar to that obtained without neglecting any coefficients

This result confirms that, in low wind speed conditions, the lateral dispersion parameter is mainly governed by « large scale » atmospheric motions

Results

□ With the EAVF method, it has been observed that the turbulence intensity on the test site, over time intervals of *T* seconds

$$I_{v'} = E\left[\frac{\sigma_{v',T}}{\left|\overrightarrow{U_i}(t)\right|}\right]_T$$

With

 $\vec{U}(M,t) = \vec{\overline{U}}(M,t) + \vec{\overline{U}}(M,t)$

- ➢ is nearly constant, and equal to 0.28, for T=600s
- > thus, $\sigma_{v,T}$ can be considered as proportional to the slow time-varying wind speed

This results show that the lateral dispersion is mainly governed by the slow time varying wind speed, which can be predicted by using appropriate methods

Comparison of the results with Briggs's and Doury's parameterizations

• U = 0.51 m/s ,
$$\sigma_{\theta} = 12^{\circ}$$

- **Doury** gives very high values of σ_y for very low wind speeds, leading to an underestimation of the concentrations
- **Briggs** tends to underestimate σ_y when σ_θ is large, leading to overestimation of the concentrations
- **GRPT** (Method1) and EAVF (Method2) exhibit similar results, close to Briggs's parameterization for small σ_{θ}
- For large σ_{θ} , the two developed methods give more consistent results

Conclusions

- Our methods provide simple yet effective ways to obtain a quantitative estimate of the lateral dispersion coefficient in low wind speed conditions
- □ They give consistent results in the presence of large slow horizontal wind motions, notably for 1m/s < U < 2m/s and $\sigma_{\theta} > 25^{\circ}$, when both Doury's and Briggs's parameterizations appear to be less efficient
- Our study confirms that the lateral dispersion in low wind speed conditions, is mainly governed by large scale atmospheric motions
- Thus suitable parameters can be computed by using advanced methods (ANN, ARIMA, ...) to predict the slow time varying wind speed.

Thank you for your attention