

energie atomique · energies alternatives

CAPABILITY OF THE STANDARD (K,EPS) MODEL FOR SIMULATING ATMOSPHERIC DISPERSION OVER A NPP SITE

Authors: P. Roubin, F. Jourdain Speaker: T. Hedde

Commissariat à l'Energie Atomique et aux Energies Alternatives,

C.E. Cadarache, 13108, St Paul lez Durance, France

atomique · energies alterna

Background:

- Impact and safety studies: distribution of radionuclides or other air transported pollutants on a Nuclear Power Plant site
- Wind tunnel experiments at LMFA*, founded by IRSN**, EDF*** Bugey NPP site (Méjean 2005)

Means:

- CFD & dispersion simulation with the **STARCD** code **Objective**:
- Check capability of basic modelling options to simulate this flow by inter-comparing with the wind tunnel data

- * Laboratoire de Mécanique des Fluides et Acoustique, Ecole Centrale de Lyon
- ** Institut de Recherche sur la Sûreté Nucléaire *** Electricité de France

energie atomique • energies alternatives

Characteristics of experiment:

- scale 1/500, similarity of \vec{V} , Re distortion 1/500
- inlet and ground devices simulate the neutral ABL
- 2 opposite wind directions, 3.7 m/s at 50m height
- 2 types of source: stack or containment building
- Measurements

Model

- at 15 streamwise positions from the source, horizontal profiles available at 4 heights and vertical profiles available at X=0
- mean velocity components \overline{U} , \overline{V} , \overline{W} and r.m.s. of stream wise fluctuating component v' by LDA*

- instant concentration of tracer (ethane) by FID**

* Laser Doppler Anemometry

** Flame Ionisation Detector

energie atomique · energies alternatives

Oy axis points to the north

Cooling tower height 140 m Ø_{top} 70 m

energie atomique • energies alternatives

Release from ventilation stack ^{28 000 m3/h} height 55 m speed W=20m/s

Release from containment building skin 17000 m3/h

(height 50 m)

Location of sources

Characteristics of (k, ε) computation:

- Grid
 - Domain 1000m x 3000m x 300m
 - Minimum cell size horizontally 0.3m, vertically 0.5m
 - Total mesh comprises 0.41 to 0.65 10⁶ cells
- Boundary conditions
 - Simulate the neutral stability homogeneous SBL
 - Inlet profiles as by Richards & Hoxey
 - Rough wall at ground (aerodynamic rugosity 0.04m)
 - Smooth walls on buildings
 - Profile values at h=300m imposed on top boundary

nergie atomique • energies alternatives

DEN/CAD/DTN/SMTM/LMTE

energie atomique • energies alternatives

Effect of Reynolds distortion

checked on Oy ground concentration for stack release

Re tunnel = $4 \ 10^4$ (subcritical), Re site = $2 \ 10^7$ (supercritical)

Conclusions

- Effect of large buildings is crucial on an industrial site
- Maximum ground concentration is twofold underpredicted in the near field, due to underprediction of turbulent mixing in the built area
- In the far field maximum concentration is twofold overpredicted due to the lack of lateral spreading by the (k,ϵ) model
- In case of stack release it is essential to simulate well the initial exhaust plume deflection
- We have to pay attention to Reynolds distortion effects when applying tunnel experiments to the real world
- Effect of wind direction and source type/location is qualitatively well captured by a basic turbulence model

If I can't answer please mail to pierre.roubin@cea.fr

