ADMS-Urban: Developments in modelling dispersion from the city scale to the local scale

Jenny Stocker, Christina Hood, David Carruthers & Christine McHugh

14th International Conference on Harmonisation within Atmospheric Dispersion Modelling for Regulatory Purposes 3 – 6 October 2011 Kos, Greece

Contents

- Motivation
- CMAQ/ADMS-Urban nesting system
- Preliminary modelling
 - Model set up
 - Model results
- Discussion

Motivation

Why nest a local model within a regional model?

Model feature	Model	
	Regional (eg grid based)	Local (eg Gaussian plume)
Domain extent	Country (few 1000 km)	City (50km)
Meteorology	Spatially and temporally varying from meso scale models	Usually spatially homogeneous
Dispersion in low wind speed conditions	Models stagnated flows correctly	Limited modelling of stagnated flows
Deposition and chemical processes	Reactions over large spatial and temporal scales	Simplified reactions over short-time scales
Source resolution	Low	High
Validity	Background receptors	Background, roadside and kerbside receptors

Motivation

- Why nest a local model within a regional model?
- What are the advantages of a nested model?

Model feature	Model	
	Regional (eg grid based)	Local (eg Gaussian plume)
Domain extent	Country (few 1000 km)	City (50km)
Meteorology	Spatially and temporally varying from meso scale models	Usually spatially homogeneous
Dispersion in low wind speed conditions	Models stagnated flows correctly	Limited modelling of stagnated flows
Deposition and chemical processes	Reactions over large spatial and temporal scales	Simplified reactions over short-time scales
Source resolution	Low	High
Validity	Background receptors	Background, roadside and kerbside receptors

 Aim: to nest local model in regional model without double counting emissions i.e.:

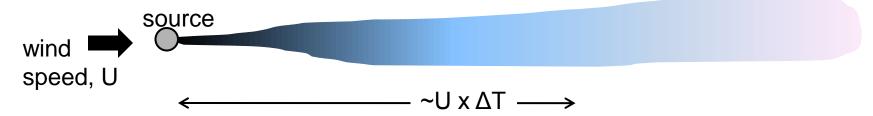
Concentration within nested domain

Regional modelling of - emissions

Gridded locally modelled + emissions (ΔT)

Explicit locally modelled emissions (ΔT)

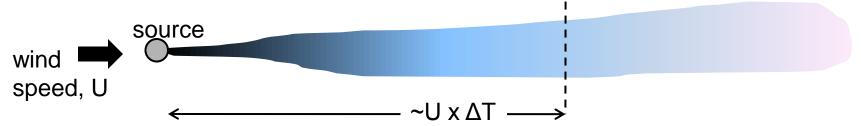
ΔT is the time taken to mix the explicitly defined emissions to produce a concentration field that varies spatially on the same scale as the regional model


ΔT varies with meteorology

 Aim: to nest local model in regional model without double counting emissions i.e.:

Concentration within nested domain Regional Gridded locally Explicit locally modelled - modelled + modelled emissions (ΔT)

 ADMS-Urban steady-state Gaussian plume model allows plumes to disperse for times > 1 hour, whilst limiting calculations to 1 hour i.e.:

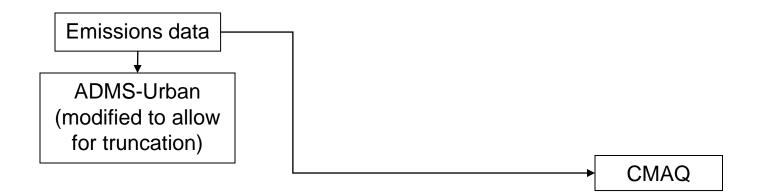


 Assumption valid if variation in meteorology and emissions relatively slow from hour to hour.

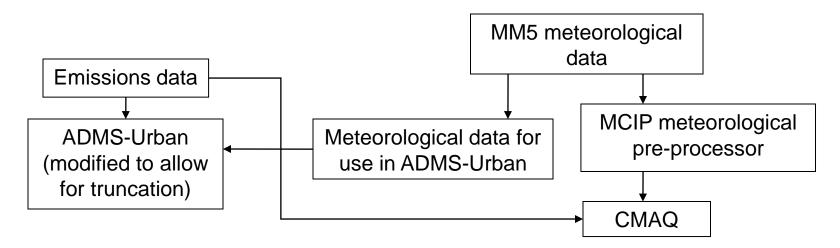
 Aim: to nest local model in regional model without double counting emissions i.e.:

```
Concentration within nested domain Regional Gridded locally Explicit locally modelled - modelled + modelled emissions (\Delta T)
```

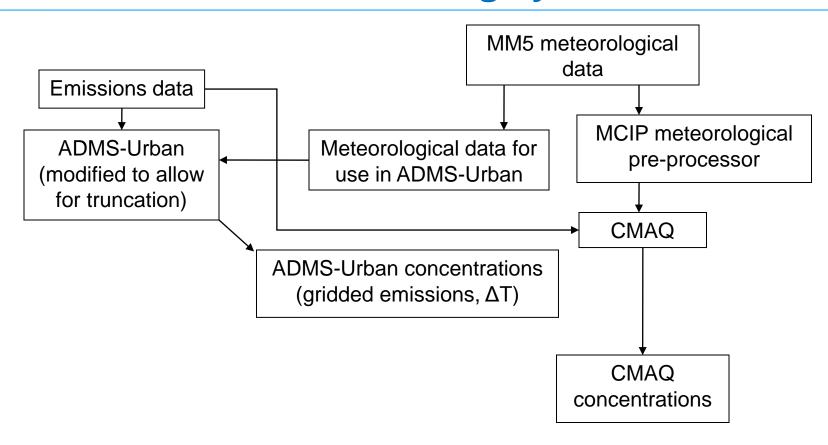
 ADMS-Urban steady-state Gaussian plume model allows plumes to disperse for times > 1 hour, whilst limiting calculations to 1 hour i.e.:

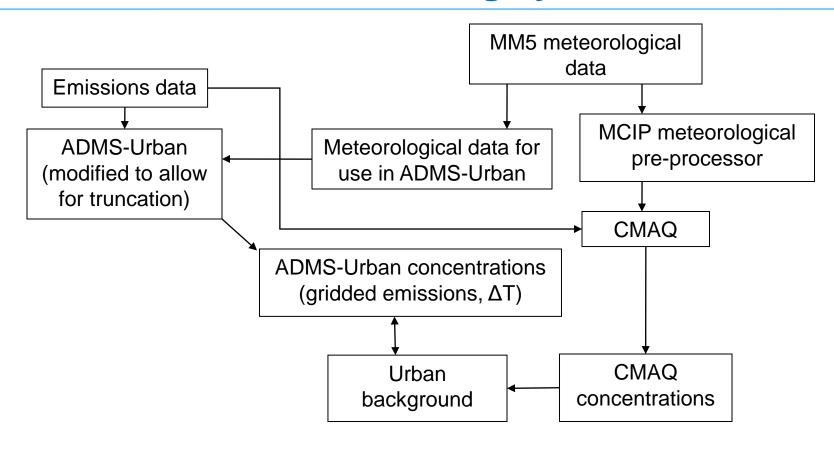


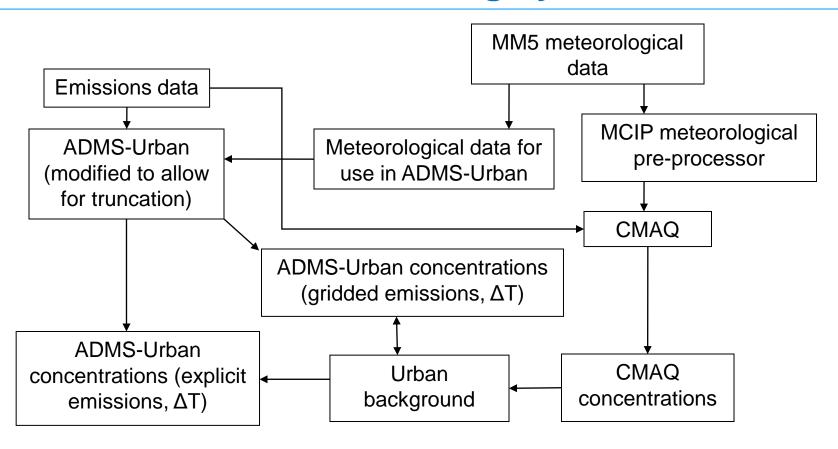
- Assumption valid if variation in meteorology and emissions relatively slow from hour to hour.
- When nesting ADMS-Urban in CMAQ, ensure that the locally modelled emissions (gridded and explicit) are truncated (- - -) at the correct time.

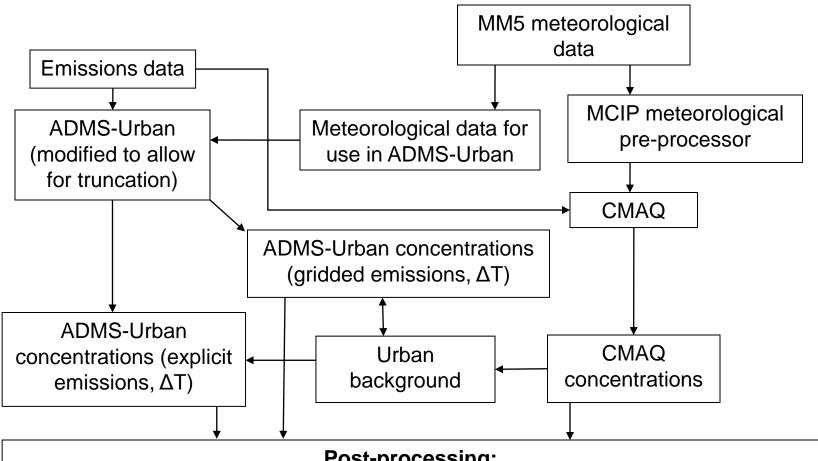


Emissions data









Post-processing:

Nested concentrations = CMAQ concentrations – ADMS-Urban concentrations (gridded emissions, ΔT) + ADMS-Urban concentrations (explicit emissions, ΔT)

Preliminary modelling Model set up (I)

Simplified model set up

Domain:

Regional model : south east England

Local model : ~ congestion charging zone in central London

Emissions:

- London Atmospheric Emissions Inventory (detailed) and UK National Atmospheric Emissions Inventory (1 km² grid)
- Only detailed emissions of NO_x, NO₂ and ozone
- Emissions from large point sources neglected
- Meteorology
 - Output from the meso-scale model MM5
 - 2 x 5 day periods (summer, winter)

Preliminary modelling Model set up (II)

Simplified model set up

- Regional model:
 - Domain 120 km by 120 km, centred on nested domain
 - Emissions were aggregated onto 3 by 3 km² grid cells
 - All emissions released within the lowest layer of CMAQ vertical grid
 - Simplified initial and boundary conditions
 - CB-05 version 5 aerosol mechanism and aqueous chemistry
- Local model
 - Domain 9 km by 9 km
 - Emissions from all major roads modelled explicitly
 - Source-receptor travel time/mixing time ΔT limited to 2 hours

- 17 continuous monitors within nested modelling region:
 - All recorded NO_x and NO₂ concentrations
 - 5 recorded ozone
 - Classified according to location: kerbside, roadside and urban background

- 17 continuous monitors within nested modelling region:
 - All recorded NO_x and NO₂ concentrations
 - 5 recorded ozone
 - Classified according to location: kerbside, roadside and urban background
- Validity of nesting:

Concentration within nested domain

Regional of - emissions

Gridded locally
- modelled
emissions (ΔT)

Explicit locally modelled emissions (ΔT)

- 17 continuous monitors within nested modelling region:
 - All recorded NO_x and NO₂ concentrations
 - 5 recorded ozone
 - Classified according to location: kerbside, roadside and urban background
- Validity of nesting:

Concentration within nested domain

Regional 6 modelling of - emissions e

Gridded locally E modelled + emissions (ΔT) er

Explicit locally modelled emissions (ΔT)

Preliminary modelling Model results: validity of nesting

CMAQ 250 200 Gridded local NOx (µg/m3) 150 Winter ADMS model 100 50 05/01/2008 07/01/2008 38/01/2008 04/01/2008 06/01/2008 **Date** 140 120 100 NOx (µg/m3) 80 60 Summer 40 20 **Date** 04/07/2008 05/07/2008 07/07/2008

- 17 continuous monitors within nested modelling region:
 - All recorded NO_x and NO₂ concentrations
 - 5 recorded ozone
 - Classified according to location: kerbside, roadside and urban background
- Validity of nesting:

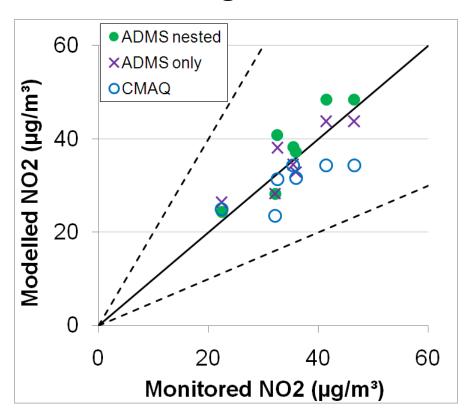
Concentration within nested domain

Regional modelling of emissions

Gridded locally
- modelled
emissions (ΔT)

Explicit locally modelled emissions (ΔT)

- Model results at receptors:
 - ADMS-Urban nested within CMAQ
 - CMAQ only
 - ADMS-Urban only



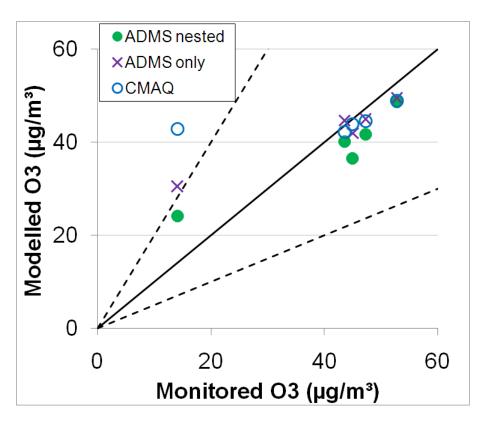
Preliminary modelling Model results: receptors – NO₂

Roadside and Kerbside

ADMS nested 150 ×ADMS only Modelled NO2 (µg/m³) OCMAQ 100 50 50 100 150 Monitored NO2 (µg/m³)

Background

(Summer)



Preliminary modelling Model results: receptors – O₃

ADMS nested 60 ×ADMS only **OCMAQ** Modelled O3 (µg/m³) 40 × 20 20 40 60 Monitored O3 (µg/m³)

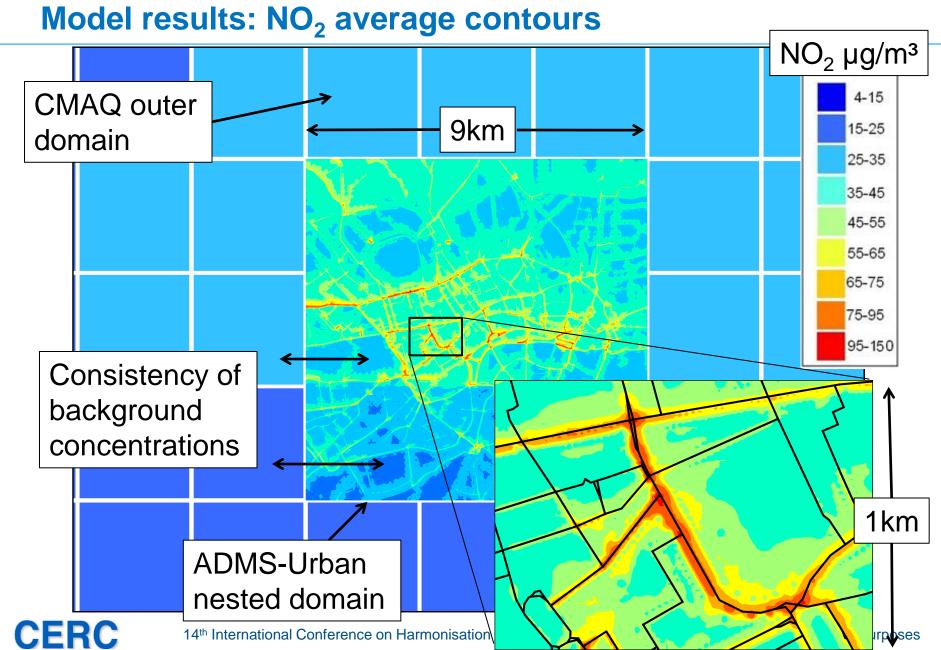
Summer

(All sites)

- 17 continuous monitors within nested modelling region:
 - All recorded NO_x and NO₂ concentrations
 - 5 recorded ozone
 - Classified according to location: kerbside, roadside and urban background
- Validity of nesting:

Concentration within nested domain

Regional Gr modelling of emissions


Gridded locally modelled emissions

Explicit locally modelled emissions

- Model results at receptors:
 - ADMS-Urban nested within CMAQ
 - CMAQ only
 - ADMS-Urban only
- Contour output:
 - ADMS-Urban nested within CMAQ

Preliminary modelling

Discussion

- Presented consistent methodology for nesting local model within a regional model
- Preliminary model results encouraging, despite simplifications
- This approach allows for modelling of:
 - chemical reactions over large and small temporal and spatial scales
 - spatially varying meteorology
 - low wind conditions
 - local modelling (street canyons, noise barriers, cuttings etc)
- Model validation at all sites: background, roadside and kerbside
- Future developments of system

