A Renaissance Study of Dispersion Processes around a Major Roadway

Andrew Malby¹, J. Duncan Whyatt¹, Vlad Isakov², David Heist², Steve Perry², Roger Timmis³ and David Carruthers⁴

¹ Lancaster Environment Centre, Lancaster University, UK
 ² US Environmental Protection Agency, North Carolina, USA
 ³ Environment Agency for England and Wales, UK
 ⁴ Cambridge Environmental Research Consultants (CERC), UK

UNIVERS

Structure of Presentation

• Introduction

- Renaissance...?
- Las Vegas roadway study
- Study objectives
- Explanation of conditional approach
- Application of conditional approach
 - Observed vs modelled distance decay
 - Observed vs modelled vehicle-wake
- Discussion & conclusion

A Renaissance of Roadway Studies?

- Long history of roadway dispersion studies (e.g. from 1970s using ESL and Caltrans models)
- Recent revival following new evidence, methods & tools. For example:
 - Growing health concerns (exposure to 'no-effect' threshold pollutants)
 - New data-collection methods (e.g. sonic anemometers, vehicle-numberplate recognition)
 - 'New-generation' dispersion models
 - Directional data-analysis techniques
- This study focuses on **new techniques** for analysing ambient roadway-pollutant concentrations

Las Vegas Roadway Study (1)

• Analysis of roadway concentrations in the 'near-road' environment

500m -

Las Vegas Roadway Study (2)

- 15-month campaign
 (Dec 2008 Feb 2010)
- 4 x 5-minute NO, NO₂, NOx
- 4 x sonic anemometers (u, v, w)
- Hourly airport meteorology: wind speed/direction, RH, temp, cloud cover
- Hourly N- and S-bound traffic speed and volume

Objectives

- Examine observed records of NOx for evidence of:
 - Distance decay
 - Vehicle wake
- Assess ability of a model to re-produce
- *Conditional-analysis' approach taken bulk tests of performance*

Conditional Approach

Observed Distance Decay (NOx)

Observed Distance Decay (NOx)

Dispersion Modelling Approach

BASIC

Model: Meteorology: Traffic: Emissions:

Flat terrain

ADMS-Urban 3.0 Sonic anemometer and airport Binned distribution per stability ADMS rates based on traffic

OTHER

Surface roughness:	1.0m
Minimum L _{MO} :	30m
Wake height:	3.5m

Modelled Distance Decay (NOx)

Modelled Distance Decay (NOx)

Downwind Analysis for Wake Effects

- Stable conditions
- Compare ~ 1 veh/sec vs ~ 2 veh/sec
- NOx concentrations normalised (ppt/vehicle)
- Compare observed and modelled (profile) at 10, 100 & 300m

Selected

Un-selected

Observed Vehicle Wake

Modelled Vehicle Wake

Limitations

- Field campaign Design
 - Background levels at 'upwind' monitor assumed representative
 - Oblique alignment of prevailing winds relative to monitored transect
- Modelling
 - Neglect of shallow cutting (USEPA wind-tunnel experiment show minimal effect)
 - Simplified approach to vehicle-fleet composition

Opportunities

- Bulk tests of performance: model group vs observed group
- Only possible given large investment by USEPA

- Hourly-data analysed; 5-minute resolution data available
- Thermal-rise of vehicle plumes → non 1/u wind-speed dependence?
- Scope for wider application within modelling community...

Surface roughness & Min. L_{MO} sensitivity: Stable conditions

Upwind and Downwind NOx (200-260°)

