

AUTOMATED SOURCE PARAMETER AND LOW LEVEL WIN ESTIMATION FOR ATMOSPHERIC TRANSPORT AND DISPERSION APPLICATIONS

F. Vandenberghe, P. Bieringer, I. Sykes, J. Hurst, G. Bieberbach, S. Parker & L. Rodriguez

National Center for Atmospheric Research, Boulder CO

STE recent developments

- All source parameters: $[q_s, x_s, y_s, z_s, t_r]$ and wind $[u_e, v_e]$ are adjusted during the estimation process.
- Either wind components or wind speed and direction can be used and adjusted.
- Two step minimization:
 - 1) $[x_s, y_s, z_s, t_r, u_e, v_e]$ with logarithmic concentration
 - 2) q_s with plain concentration
- Addition of a background term (a priori information) in the cost function to remove ambiguities between source parameters.

 NCAR/RAL - National Security Applications Program

Gaussian Puff Model

gs

Input vector:
$$S = \begin{bmatrix} S_{1} \\ S_{2} \\ \vdots \\ S_{r} \end{bmatrix}$$
 Output vector: $C(t) = \begin{bmatrix} C_{1}(t) \\ C_{2}(t) \\ \vdots \\ C_{r}(t) \end{bmatrix}$

Model at time t of a given grid $1 \le n \le N$:

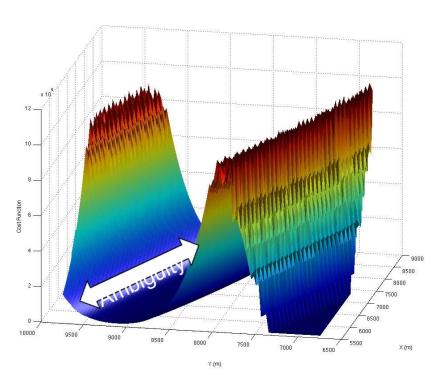
$$C_{n}(t) = \frac{q_{s}}{\sqrt{2\pi}^{3} \sigma_{\chi} \sigma_{V} \sigma_{V}} = \frac{x - x_{s} - u_{e}(t - t_{r})^{2}}{2\sigma_{\chi}^{2}} - \frac{y - y_{s} - v_{e}(t - t_{r})^{2}}{2\sigma_{y}^{2}} = \exp\left[\frac{z - z_{s}^{2}}{2\sigma_{z}^{2}}\right] + \exp\left[\frac{z + z_{s}^{2}}{2\sigma_{z}^{2}}\right]$$

Ambiguity location wind

Same concentrations can be obtained by permutations of source location, wind and release time

Prior information needs to be provided to remove the ambiguity

Cost function with prior (background) information


Distance of model predicted concentration C to the sensor measurements C^{obs} (with uncertainty σ^{obs})

$$J^{obs} = \frac{1}{2} \frac{\left[\mathbf{C}^{obs}(t) - \mathbf{C}(t) \right]^{2}}{\sigma^{obs}}$$

Distance

$$J^{bck} = \frac{1}{2} \begin{bmatrix} x_s^{bck} - x_s \\ \sigma^x \end{bmatrix}^2 + \begin{bmatrix} x_s^{bck} - x_s \\ \sigma^x \end{bmatrix}$$

Total cost

ound term:

$$\frac{1}{2} \frac{|V_e^{bck} - V_e|}{\sigma^v}$$

Important point

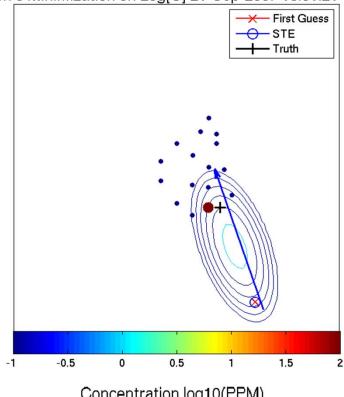
σ's are weight between the background information (first guess source provided by reverse SCIPUFF) and the concentration from sensor

$$2J = \begin{bmatrix} q_s^{bck} - q_s \\ \hline \sigma^q \end{bmatrix} + \begin{bmatrix} x_s^{bck} - x_s \\ \hline \sigma^x \end{bmatrix} + \begin{bmatrix} y_s^{bck} - y_s \\ \hline \sigma^y \end{bmatrix} + \begin{bmatrix} z_s^{bck} - z_s \\ \hline \sigma^z \end{bmatrix} + \begin{bmatrix} t_r^{bck} - t_r \\ \hline \sigma^r \end{bmatrix} + \begin{bmatrix} u_e^{bck} - u_e \\ \hline \sigma^u \end{bmatrix} + \begin{bmatrix} v_e^{bck} - v_e \\ \hline \sigma^v \end{bmatrix} + \begin{bmatrix} c_r^{obs}(t) - C(t) \\ \hline \sigma^{obs} \end{bmatrix}$$

$$2J = \begin{bmatrix} q_s^{bck} - q_s \\ \hline 1kg/s \end{bmatrix} + \begin{bmatrix} x_s^{bck} - x_s \\ \hline 500m \end{bmatrix} + \begin{bmatrix} y_s^{bck} - y_s \\ \hline 500m \end{bmatrix} + \begin{bmatrix} z_s^{bck} - z_s \\ \hline 0.5m \end{bmatrix} + \begin{bmatrix} z_s^{bck} - z_s$$

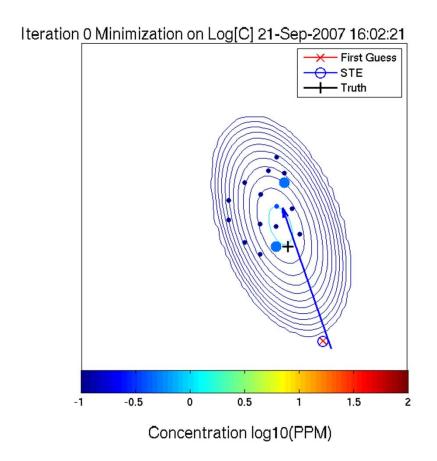
small error, ie high confidence, z_s will be slightly changed during the estimation

It's important that each term is properly scaled, or the corresponding parameter will have too much or too little effect on the minimization.


Example FFT07 Case 37

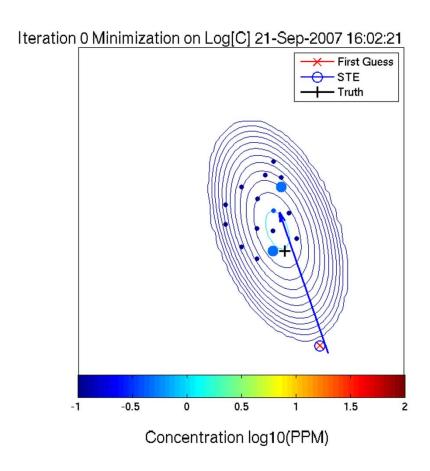
- Reverse SCIPUFF estimated the source 567m south east from the true release point, release mass was overestimated, but release time was correct
- For demonstration a +36s shift was added to the reverse SCIPUFF first guess, before STE.
- STE was carried with 10 iterations (7 log + 3 linear) when:
 - 1) All source parameters $[q_s, x_s, y_s, z_s, t_r, U_e, \theta_e]$ are adjusted,
 - 2) Release time is fixed, other parameters are adjusted
 - 3) Wind speed and direction is fixed, other parameters are adjusted

FFT07 Case 37 **First Guess**



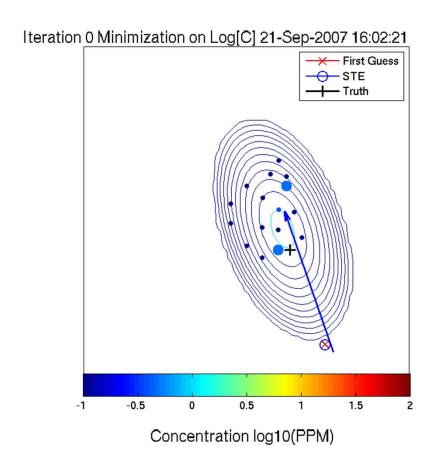
Concentration log10(PPM)

Reverse SCIPUFF located the source (x) 567m South East from the true source (+)

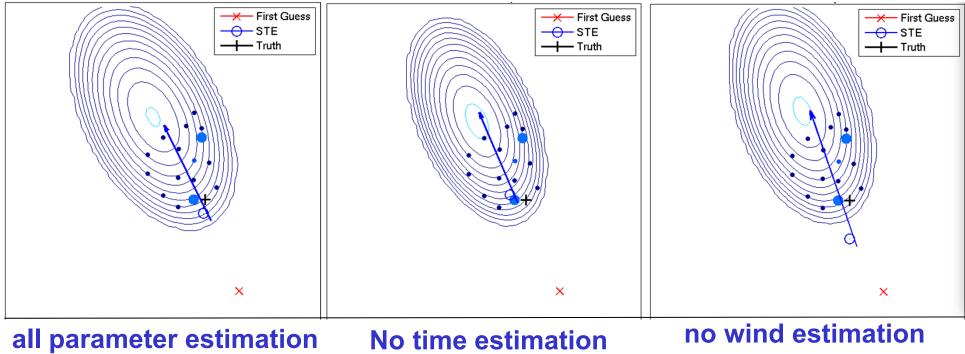


FFT07 Case 37 all $[q_s, x_s, y_s, z_s, t_r, U_e, \theta_e]$ adjustment

STE (o) moved the source location from SCIPUFF first guess (x) at **79m** from the true source (+)


FFT07 Case 37 NCAR $[q_s, x_s, y_s, z_s, U_e, \theta_e]$ adjustment (fixed $t_r = +36s$)

STE (o) moved the source location from SCIPUFF first guess (x) to **99m** from the true source (+)


FFT07 Case 37 [q_s , x_s , y_s , z_s , t_r] adjustment (fixed U_e & θ_e)

STE (o) moved the source location from SCIPUFF first guess (x) to **224m** from the true source (+)

FFT07 Case 37

Error = 78m

No time estimation Error = 99m

no wind estimation **Error = 224m**

FFT07 Case 37

	FG	STE	Truth
Q kg/s	5	4.3	4
Xm	3013	2814	2826
Υm	1436	1895	1972
Z m	1.6	1.6	1.6
Ts	36	9	0
U m/s	6	4.4	??
O deg	oalrame	tel ¹⁶ est	mation

Error = 78m

ıth	Tru	STE	FG
	4	4.8	5
26	282	2732	3013
72	197	2005	1436
)	1.6	1.6	1.6
	0	36	36
	??	4.0	6
	??	113	109

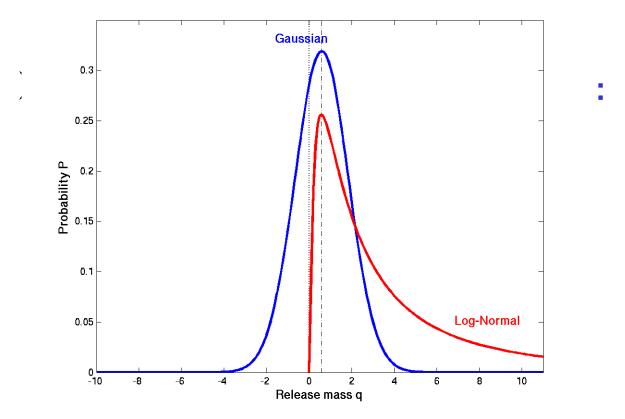
IJ	114) !	
OV	time	estin	nation
	Erro	r = 99	m

FG	STE	Truth
5	4.6	4
3013	2819	2826
1436	1748	1972
1.6	1.6	1.6
36	19	0
6	6.0	??
109	109	??

no wind estimation Error = 224m

Reported observed wind was U = 6 m/s, $\theta = 109^{\circ}$

Summary


- All parameter estimation performs best
- Observed winds were not consistent with concentration reports
- Accurate release time seems less important than accurate winds
- Mass estimation must be improved

Current Work

1)Use of lognormal PDF for mass and concentration:

- One minimization for all
- No negative values

Next

- Better characterization of uncertainty through the σ 's
- Addition of correlations, e.g. wind/position errors