SO2 effect on Secondary Organic Aerosol Formation: Experimental And Modelled Results

Marta García Vivanco ⁽¹⁾, Manuel Santiago Aladro ⁽¹⁾, Ariel Stein ⁽²⁾ and M^a Ángeles González ⁽¹⁾

(1) CIEMAT – Madrid Spain (2) NOAA - ARL

<u>m.garcia@ciemat.es</u>

This presentation will be focused on:

 The analysis of the capability of TWO AIR QUALITY MODELS (*CMAQ*, *CHIMERE*, *reduced versions*) to simulate the formation of SOA under acidic conditions, considering some experimental data (*EUPHORE chamber*, *CEAM*, *Valencia*, *Spain*).

EUPHORE CHAMBERS. CEAM, Valencia, SPAIN

EUPHORE, TECHNIQUES, EXPERIMENTS

Gas chromatography coupled to a mass spectrometer (GC-MS)

 infrared instrumentation (FTIR); Scanning mobility particle sizer (SMPS); Tapered element oscillating monitor (TEOM); High performance liquid chromatography (HPLC)

Initial conditions. **Concentration in ppb**. **RH in %.** *Submitted to Atmos. Envir. as short commun., Vivanco et al. 2011)*

ANTHROPOGI	ENIC EXPE	RIMENTS							
	TMB	TOL	OXYL	OCT	HONO	NO	NO ₂	SO ₂ RI	H
20090610**	131 ± 15	87 ± 14	22 ± 4	87 ± 18	122 ± 5	59 ± 2		17-	-4
20090622**	19 ± 5	116 ± 18	29 ± 4	10 ± 2	119 ± 6	57 ± 5		14-2	17
20090623**	101 ± 28	81 ± 13	22 ± 3	75 ± 15		34 ± 3	69 ± 5	17-1	18
20091006*	129 ± 13	86 ± 23	24 ± 11	73 ± 38	90 ± 3	31 ± 2		37-2	28
20091007**	122 ± 23	82 ± 16	19 ± 4	71 ± 14	79 ± 5	118 ± 8	57 ± 4	46-3	52
20091008*	121 ± 36	84 ± 25	23 ± 12	72 ± 35	292 ± 19	261 ± 17	80 ± 5	0.5	-1
20091030*	118 ± 10	82 ± 9	19 ± 11	64 ± 38	281 ± 18	128 ± 8	17 ± 1	17-2	22
20091103*	239 ± 20	200 ± 12	47 ± 14	154 ± 38	198 ± 12	169 ± 10	24 ± 1	19-1	16
BIOGENI	C FYPFRIN	IFNTS							
DIOGLI		ADIN	IMO		HONO	NO	NO	50 01	T
20000(24***	107 ± 2	$\frac{AII}{66 \pm 5}$	50 ± 4		$\frac{1000}{00\pm6}$	24 ± 2	120 ± 1	$\frac{50_2}{5}$	-3
20090624***	$10/\pm 3$	00 ± 3	58 ± 4		99 ± 0	34 ± 2	128 ± 1	17	-J 11
20091005**	121 ± 34	64 ± 18	56 ± 16			43 ± 3	26 ± 1	20.2	11 26
20091014***	92 ± 3	50 ± 5	50 ± 4		87 ± 5	48 ± 3			20
20091026*	122 ± 33	71 ± 18	40 ± 10		53 ± 3	41 ± 2		. 9-2	22
20091027**		63 ± 18	65 ± 18		101 ± 7	32 ± 2		8-1	.3
20091029*	99 ± 28	59 ± 12	53 ± 13		307 ± 20	150 ± 10		8-1	. 1
									•
MIXED	EXPERIM	ENT							-
	TMB	TOL	OXYL	OCT	HONO	NO	NO ₂	SO ₂ RI	H
20091106*,***	30.2 ± 7	166.8 ± 20	39 ± 11	24.6 ± 7	104.8 ± 7	141 ± 9	58.8 ± 4	0.4-	-3
	BENZ	ISO	APIN	LIMO					

* GC, ** GCMS, *** FTIR; HONO is measured with FTIR; NO, NO₂ and SO₂ are measured with monitors.

4

3

	TMB ppb	TOL ppb	OXYL ppb	OCT ppb	HONO ppb	NO ppb	NO ₂ ppb	SO ₂ ppb	RH %	T K
A1	171	101	25	88	99	19	-		19-10	296-305
A2	160	107	26	89	89		-	17	18-9	298-307
A3	116	84	18	72	57	182	128	514	47-62	299-297
A4	204	106	23	87	89	126	36	582	16-25	302-307
A5	155	100	24	85	94	15	-	790	9-4	299-307

Day	TOL	TMB	OXYL	OCT	HONO	SO ₂ RH
	μg/m ³	μg/m ³	µg/m ³	µg/m ³	µg/m ³	$\mu g/m^3$ %
6/16/08	205	440	54	211	923	0.1
6/18/08	767	1501	217	737	147	17.8
6/19/08	184	530	49	200	139	14.4
6/20/08	378	804	107	377	307	12.0
6/23/08	371	729	93	384	102	13.3
6/24/08	371	728	97	388	183	0.6
	APIN	ISO	LIMO			
	µg/m ³	µg/m°	µg/m'			
6/25/08	591	535	585		330	11.1

Experimental results

- The inorganic content of the aerosol was determined by analitycal methods described in a previous paper [Vivanco et al., 2011b].
- Inorganic characterization (%) of the filtered aerosol mass collected in the experiments:

	(A1)	(A2)	(A3)	(A4)	(A5)	
Nitrates (%)	4-8.5	2.5-5	1.7-2.1*	1.7-2.1	1-2.5	
Sulphates (%)	1-2.0	4-10.5	28-31*	28-31	33-44	
* As no filter was available, values for A4 were used.						

 $Y = \frac{\Delta Mo}{\Delta ROG}$

Exp.	$VOC_o (\mu g/m^3)^a$	$HONO_o$ (µg/m ³)	$\Delta ROG \ (\mu g/m^3)^a$	$\Delta Mo~(\mu g/m^3)$	Y _{SOA} (%)
6/16/08	913.81	92.25	762.31	18.78	2.5 ± 0.3
6/17/08	1776.03	193.09	1025.64	52.36	5.1 ± 1.5
6/18/08	3208.96	147.05	1359.54	60.66	4.5 ± 2
6/19/08	960.13	139.76	733.26	23.22	3.2 ± 0.3
6/20/08	1661.52	305.85	1211.34	43.65	3.6 ± 0.5
6/23/08	1575.92	101.01	531.76	28.64	5.4 ± 3.7
6/24/08	1578.63	182.91	924.30	53.49	5.8 + 1.8
6/25/08	1665.69	332.88	1710.59	348.94	20.4 ± 5.2
6/26/08	1739.12	171.23	1589.15	235.52	14.8 ± 1.8
7/01/08	913.81	173.23	1061.70	31.31	3 ± 0.6

ANTRHOPOG	ENIC PRECURSORS		BIOGENIC PRECURSORS		
Ехр	Y_SOA (%)		Ехр	Y_SOA (%)	
180608	4.5		51009	14.1	
230608	4		261009	18.6	
170608	5.1		250608	20.40	
190608	3.2		141009	18.9	
200608	3.6		271009	29.6	
31109	4.3		240609	21.6	
301009	7.5		70619	25.7	
240608	5.8		291009	23.2	
220609	7.8		231003		
260608	14.8				
70108	3				
		I	EXP WITHOUT	FISOPRENE	
			(JUST APIN +	LIM)	
GOBIERNO DE ESPAÑA E INNOVACIÓN	Centro de Investigaciones Energéticos, Medioambientales y Tecnológicos		Kos Island, G	14th HARMO Greece, 2-6 October 2011	

Experimental results...

Model setup...

Model set-up

• 1st. Prepare a *reduced version* of *CHIMERE* and *CMAQ*

We changed the code of these models, as they are 3D models (by discounting advection, turbulence, deposition, emissions).

Brief description of SOA mechanism in CHIMERE and CMAQ...

(for anthropogenic precursors)

Centro de Investigaciones Energéticas, Medioambientales y Tecnológicas Kos Island, Greece, 2-6 October 2011

SOA Description in CHIMERE

	Lumped precursors	Hydrophilic SOA	Hydrophobic SOA
	Monosubstituted aromatics	AnAQD, AnA1D,	AnBmP, AnBlP
	(toluene and others) and	AnA2D	
/-	benzene		
/	Polysubstituted aromatics		
	(xylenes and	AnA0D AnA1D AnA2D	
	trimethylbenzenes)		7.110.111
	Long alkanes		AnBmP
S	SOA Description in CMAQ		
	Lumped precursors	Semivolatile SOA	Nonvolatile SOA
	Long alkanes	AALK	
	Benzene	ABZN1, ABZN2,	ABZN3
	High yield aromatics	ATOL1, ATOL2	ATOL3
	(toluene)		
	Low yield aromatics	AXYL1, AXYL2	AXYL3
N	(xylenes and		
	trimethylbenzenes)		

Hydrophilic: most likely to dissolve into aqueous inorganic particles Hydrophobic SOA that are most likely to absorb into organic particles

SOA Description in CHIMERE and CMAQ

*K*ow value of 10 was used as the criterion separating hydrophilic (Kow < 10) and hydrophobic (Kow > 10) compounds.

T : temperature (K)

 MW_{OM} : mean molecular mass of the organic particulate phase γ_i : activity coefficient

 P_i^{sat} : saturation vapor pressure (atm)

Equilibrium partitioning coefficients

MINISTERIO

DE CIENCIA

OBIERNO

 $\mathbf{K}_{i} = \frac{RT}{10^{6} M W_{OM} \gamma_{i} P_{i}^{sat}}$

Centro de Investigaciones neraéticas. Medioambientale

Some modelling results...

A1 (no SO2)

A2 (17 ppb SO2)

A2 (17 ppb SO2)

Centro de Investigaciones Energéticas, Medioambientales y Tecnológicas

A3 (514 ppb SO2)

Kos Island, Greece, 2-6 October 2011

Results for the aerosol phase: <u>sulphates and nitrates</u>

Results for the aerosol phase: organic aerosols

2. SOA acidicenhancement is notcaptured by any model.Large underestimation

RESULTS FOR AEROSOLS

RESULTS FOR AEROSOLS

CHIMERE Simulation Results

	ppbC	ppb SO2	ppbC/ppb SO2
20080617 (A1)	3150	0	
20080701 (A2)	3109	17	183
20091116 (A3)	2352	514	5
20100608 (A4)	3458	582	6
20080626 (A5)	2967	790	4

ACKNOWLEDGEMENTS

This study has been financed by the Spanish Ministry of Science and Innovation (CGL2008 02260/CLI) and the Spanish Ministry of Environment and Rural and Marine affairs.

Marta García Vivanco (1), Manuel Santiago Aladro (1), Ariel Stein (2) and M^a Ángeles González

(1) CIEMAT – Madrid Spain (2) NOAA - ARL

<u>m.garcia@ciemat.es</u>

