Ensemble techniques to improve air quality assessment focus O₃ and PM over Portugal

A. Monteiro | I. Ribeiro | O. Tchepel | A. Carvalho E. Sá | J. Ferreira | A.I. Miranda | C. Borrego University of Aveiro, Portugal

S. Galmarini JRC, Italy

HARMO14 conference Kos, Greece | October 2011

Models results sometimes are below our expectations...

How to improve model performance? ...there is hope!

- using several different models
- applying bias correction techniques
- applying ensemble techniques

• ...

What type of ensemble?

ENSEMBLE approaches

- ensemble can be applied in different conceptual forms
- a single model and multiple inputs; or multimodel approach

[Galmarini et al., 2004]

Air quality models

Several different models exist, with distinct:

- meteorological forcing
- emissions specification
- physical parameterizations
- chemical mechanisms
- aerosol formulation
- dry/wet deposition formulation
- etc...

Modelling setup

The different models were applied over Portugal, with high resolution Data from 24 background stations were used for model validation

Domain

Portugal area

Resolution

 $5x5 \text{ km}^2$

Period

2006

Which ensemble techniques?

ENSEMBLE techniques

Median (MED)

Model weights are equal

Static Linear Regression (SLR)

Model weights are different but static in time

Dynamic Linear Regression (DLR)

Model weights are different and vary in time

Bayesian Model Averaging (BMA)

Model weights are different Ensemble expressed as a probability density function (PDF)

Static Linear Regression (SLR)

Model weights are different but static in time

Weight (w_i) are found throughout linear combination...

$$\begin{bmatrix} m_{11} & m_{12} & \dots & m_{1J} \\ m_{21} & m_{22} & \dots & m_{2J} \\ \dots & \dots & \dots & \dots \\ m_{I1} & m_{I2} & \dots & m_{IJ} \end{bmatrix} \begin{bmatrix} w_1 \\ w_2 \\ \vdots \\ w_J \end{bmatrix} = \begin{bmatrix} o_1 \\ o_1 \\ \vdots \\ \vdots \\ o_I \end{bmatrix}$$

MODEL OBS

Static Linear Regression (SLR)

Influence of the training period on the model weights (from 1 - 31 days)

Variability of weights decreases with training period length

Weights vary significantly on first 10 days and little after 15 days of training

Dynamic Linear Regression (DLR)

Model weights are different and vary in time

Least square method

Different length of training periods was tested: 1, 4 and 7 previous days

No significant differences between the 3 training periods

Selection of DLR7 for ensemble comparisons

Bayesian Model Averaging (BMA)

BMA scheme describes the posterior probability density function (pdf) as a weighted average of probability distributions of individual models:

$$p(x \mid D) = \sum_{k=1}^{m} p_k(x \mid M_k, D) p(M_k \mid D)$$

w_k posterior probability of model
 M_k best forecast in ensemble
 p_k posterior probability that x occurs for model prediction M_k and observed O

Comparison of model and observed pdf shows a good linearity for O₃

More complex behaviour is demonstrated for PM10

Which one is the "best" technique?

ENSEMBLE results | Time series

ENSEMBLE results | Taylor diagram

ENSEMBLE results | Rank histogram

Is ensemble after bias correction an added-value?

Bias correction

Bias correction + ensemble

Bias correction

Bias correction + ensemble

Final comments

- Ensembles techniques performed similar and better than single models
- Slight **improvement of weighted ensembles** compared to median
- Statistical analysis indicates LR and BMA ensembles are best "performers"
- The **SLR effortless implementation** can be an advantage
- Ensemble efforts are not justified for bias-free models

