

Joint Research Centre (JRC)

IMPACT OF METEOROLOGICAL MODELLING ON AIR QUALITY: SUMMER AND WINTER EPISODES IN THE PO VALLEY (NORTHERN ITALY)

Pernigotti D., E. Georgieva, P. Thunis, B. Bessagnet

IES - Institute for Environment and Sustainability

Ispra - Italy

http://ies.jrc.ec.europa.eu/ http://www.jrc.ec.europa.eu/

Outline of presentation

Kos Island, 2-6 October 2011– 14th International Conference on Harmonisation within Atmospheric Dispersion Modelling for Regulatory Purposes

<u>Motivations:</u> 2005 - POMI-Po Valley Model Intercomparison exercise data availability

<u>Experimental design</u> MM5 (Mesoscale meteo): with different Data Assimilation

CHIMERE (Chemistry-transport): response on PM10 and O₃

Conclusions

17 March 2005 NASA Visible Earth http://visibleearth.nasa.gov/)

POMI: Po Valley Model Intercomp. Exercise 🔨

			-	
Same Street	Model	50 km	6 km	3 km
		Europe	Po-Valley	Lombardy
		ves X	X	X
	RCG (DE)	lin	X	X
The State of the	EMEP (NO)	isk X	X	
	CAMX (IT) CESI RICERCA		X	X
	AURORA (BE)	·	X	X
2218	TCAM (IT)		X	
and the com				(march
Land Prof		POMI DOMAIN		EMEP
	and some the		LOMBARDIA	FRIULI VENEZIA GULIA
	and the second second	VAL D'AOSTA		
		PIEMONTE		VENETO
		X		
	-			EMILIA ROMAGNA
http://aqm.jrc.it/POMI/	🔧 RegioneLombardia		LIGURIA	Marche
			XX -A	- In mar

It is believed that much of this PM underestimation is due to wind overestimation

"... is a continuous dynamical assimilation where forcing functions are added to the governing model equations to gradually '<u>nudge</u>' the model state toward the observations." (NCAR technical note 1995)

Analysis FDDA (MM5 preprocessor

checks and interpolate with NCEP as first guess)

- **→n**: ncep (6h)
- \rightarrow 3: n + radiosoundings (6h) \rightarrow rad: 3 + 70 surface obs (3h)
- \rightarrow gd: 3 + 70 surface obs (3h)

Direct FDDA →obs: 56 surface stations directly into MM5 (1h)

<u>MM5 v3</u>:

Boundary and Initial conditions from NCEP FNL reanalysis (6h, 1° x 1°)
2 domains (18km, 50x50; 6km 97x70)
23 vertical levels (surface-100hPa)

<u>CHIMERE</u> (2008b):

Emissions – POMI inventory (municipality level INEMAR merged with national emission inventories, Triacchini, 2009)
 Boundary condition from EMEP run at 50km
 95x65 grid points
 8 vertical levels (surface-500hPa)

MM5 Set Up

Kos Island, 2-6 October 2011–14th International Conference on Harmonisation within Atmospheric Dispersion Modelling for Regulatory Purposes

Key parameters on both domains:

IMPHYS=7 (graupel moisture scheme); ICUPA=3 (Grell cumulus scheme); IBLTYP=5 (MRF planetary boundary layer); FRAD=4 (rrtm solar radiation); ISOIL=2 (Noah land-surface scheme) IMDIF=1 (moist vertical diffusion in clouds) ITHADV=1 (ad. of potential temp.) ITPDIF=1 (sigma diffusion using perturbation) ISSTVAR=1 (varying SST in time); IOVERW=1 (overwrite nest input)

January 2005: high pressure especially from 5 to 15th with fog and PM10 exceedences

June 2005: high pressure especially from 15th to 30th with high temperatures and Ozone exceedences

500mb GEOPOTENTIAL HEIGHTS (dam) 11-DAY MEAN FOR: Wed JAN 05 2005 - Sat JAN 15 2005 500mb GEOPOTENTIAL HEIGHTS (dam) 11-DAY MEAN FOR: Mon JUN 20 2005 - Thu JUN 30 2005

Average geopotential at 500hPa is over 570 dam for over 10 days

Increment of PM10 up to 20µg m⁻³ in Milan area

Very little increment in summer (< 5 μg m⁻³)

Effect of FDDA on PM10

EUROPEAN COMMISSION Wind and ozone in June, CHIMERE wind/2

Kos Island, 2-6 October 2011–14th International Conference on Harmonisation within Atmospheric Dispersion Modelling for Regulatory Purposes

+ precursors in colder hours

O₃ average difference at 15LT

EUROPEAN COMMISSION Wind and ozone in June, CHIMERE wind/2

Kos Island, 2-6 October 2011–14th International Conference on Harmonisation within Atmospheric Dispersion Modelling for Regulatory Purposes

observations nfdda nfdda_halfw

Crema (small town 50km SE of Milan) IT0839 Urban Background

Milan IT0770 Arese Urban Background

Effect of FDDA on O₃ (June)

at σ level 5 (about 500m)

EUROPEAN COMMISSION

ug/m3

300 270 240

210 180

nfdda: a peak is in IT1121 (Druento, north of Turin) on 24 is smoothed in gdobsfdda

O3 (over 160µg m⁻³) and wind at about 500m at time 23Z 24JUN2005

FDDA of analysis and observations in MM5 decrease of BIAS in wind speed by 50% both for winter and summer

 \rightarrow the more observations the best the result (gdobsfdda)

Increase of modelled PM10 by CHIMERE up to 20µg m⁻³ on stations in central Lombardy (Milan area) in January 2005.

For Ozone the dependence on wind speed is limited as expected, with little variation due to nudging. Dependency on wind direction and precipitation can be important on specific events and is difficult to catch (in different place and/or in different time).

The nudged version of MM5 can be used for 'perturbation' study on specific episodes to gain more insight on modelled O₃ behavior.

Meteo summary variation

Kos Island, 2-6 October 2011–14th International Conference on Harmonisation within Atmospheric Dispersion Modelling for Regulatory Purposes

June 2005 difference of meteo parameters at 15LT