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Abstract: Long-term impact assessment (LIA) studies still rely on the use of deterministic dispersion modelling systems. Such a 
methodology does not allow quantifying uncertainties regarding the results of LIA studies while this kind of information is more and more 
asked by regulatory institutions. For three years, NUMTECH, CEA and PHIMECA have been collaborating to conceive an exhaustive tool 
dealing with the quantification of uncertainties related to LIA results. This tool is now functional and covers all aspects of a standard 
uncertainties study from the definition of input uncertainties to the statistical processing of concentration outputs (mean, confidence intervals, 
probabilities of threshold exceedance, etc.). The paper explains how this tool has been developed and gives examples of its use for a practical 
case study (with a unique source, a flat terrain and no plume rise) and a Gaussian plume dispersion model. 
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1. INTRODUCTION 
Long-term impact assessment studies generally involved the use of Gaussian plume models to evaluate the risk associated 
with chronic pollutant releases in the atmosphere. These models are commonly used in a deterministic framework. In other 
words, for one particular LIA study, only one model run is performed to evaluate the atmospheric dispersion of the pollutant 
releases that are taken into account. Such a methodology does not allow accounting for uncertainties that are related to the 
use of such numerical models. These are uncertainties associated with the model itself (physical parameterizations and 
assumptions that drive the evolution of modelled plumes) and with input data that are provided to run the model 
(meteorology, geographical site characteristics, specifications of the releases, etc.). 
 
The problem of quantification and propagation of uncertainties in atmospheric dispersion modelling has been widely studied 
during the last 10 years. These studies mainly focused on the identification, quantification and propagation of uncertainties 
related to model input data and involved models ranging from Gaussian plume models (e.g. Hanna et al., 1998; Hill et al., 
2002) to more complex models like computational fluid dynamics and lagrangian models (Demaël 2007 ; Mallet and 
Sportisse 2008). Generally, these authors applied parametric approaches or ensemble methods to characterize the impact of 
various sources of input uncertainties on the prediction of surface pollutant concentrations. Excepted for ensemble prediction 
studies that generally rely on the simulation of real cases, with three dimensional lagrangian models, most of these studies 
addressed the problem of uncertainties related to very simple case studies that did not reflect possible applications to LIA 
studies. 
 
Since three years, NUMTECH, CEA and PHIMECA have worked on the development of a functional tool that allows 
assessing the impact of input uncertainties on final results of typical LIA studies. First of all, a method to identify uncertainty 
sources along an atmospheric dispersion modelling chain was proposed (Brocheton et al., 2008). The various uncertainty 
sources were reviewed: collection of input data, modelling of dispersion processes and treatment of simulation outputs. Then, 
we developed a first prototype chain for the quantification of uncertainties associated with impact studies at local scale 
(Argence et al., 2010). The work consisted in (i) defining all sources of uncertainties (meteorology, emission, etc.), and (ii) 
implementing Monte-Carlo simulations for the propagation of input uncertainties with a Gaussian plume model. However, 
due to the computational cost of the simulations, the chain presented limitations and some aspects of a “classical” 
uncertainties study, like sensitivity analysis, were not implemented. More recently, we have supplemented the uncertainties 
evaluation chain and succeeded in validating it in the case of a LIA study. Two major tasks were achieved: (i) study of the 
various ways to characterize input uncertainties with a parametric representation (i.e. assigning specific probability density 
functionto each uncertain variable) or a non-parametric one (kernel smoothing distributions); (ii) study of the feasibility of 
various uncertainties propagation methods (Monte-Carlo simulations, polynomial chaos or quadratic accumulation).The 
entire chain was assessed using a practical case study (with a unique source, a flat terrain and no plume rise) and a Gaussian 
plume dispersion model. 
 
The paper is structured as follows. In section 2, the approach that has been developed is presented. In particular, this section 
addresses the questions of input uncertainties characterization, uncertainties propagation and statistical analysis of the results. 
Section 3 presents some fundamentals results obtained when applying our tool to the case under study when focusing on the 
prediction of ground level concentrations. The question of the graphical representation of the results regarding an 
uncertainties study is discussed in section 4. Some conclusions and perspectives will be drawn in the section 5. 
 
2. DESCRIPTION OF THE APPROACH 
As previously shown by Argence et al. (2010), a chain for the quantification of uncertainties associated with simulation 
outputs has been developed following the recommendations of de Rocquigny et al. (2008). This approach is displayed in 
Figure 1. Each step of the approach is described in the following subsections. 
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Figure 1. Schematic diagram representing the approach used for the quantification of uncertainties associated with groundlevel 

concentrations (adapted from de Rocquigny et al. (2008)). 
 
2.1 Step 1: Definition of the problem 
This step is probably the most important of an uncertainty analysis and each substep (input variables, dispersion model, etc.) 
must be carefully studied. Argence et al. (2010) described in details the framework of the study, that is: the goal of the 
uncertainty study, the appropriate case-study, the dispersion model to be used, the input variables, the variables and statistical 
quantities of interest. Here we just recall some fundamental information about the definition of the problem. 
 
The Gaussian plume model GANACHE, which is currently developed at Central School of Lyon (France), has been used for 
this study and is fully integrated to the tool that has been developed. This model may use various parameterizations of 
atmospheric stability (similitude theory, Pasquill-Gifford and Doury classes) but in this paper we will only focus on 
numerical experiments using the similitude and Doury approaches. Uncertainties related to variables related to meteorology, 
dispersion site (rugosity), receptors and grid height as well as release characteristics have been taken into account. Our 
approach coming within the context of LIA studies, we used a five years period of observed meteorological data to conduct 
our experiments (wind speed and direction, cloud cover and temperature). Doury classes were computed using wind speed 
and cloud cover data. The study mainly focused on the probabilistic prediction of ground level concentrations. Here we 
computed annual mean concentrations and 95th percentiles. 
 
2.2 Step 2: Quantification of input uncertainties 
As described in Argence et al. (2010), two approacheswere carried out to derive probability distribution functions (PDF) 
associated with uncertain input variables describing the meteorology: a parametric one that consists in assigning PDF to each 
uncertain input variable and a non-parametric representation of input uncertainties that relies on the use of kernel smoothing 
distributions that the best fit the natural distribution of input variables. As a mean to define the best way to process input 
uncertainties, a comparison between these two approaches has been conducted by comparing the natural relationships of 
input variables with the artificial relationships between these variables when they are modelled with PDF. An example of the 
results we obtained when plotting observed wind speeds against boundary layer heights is given in Figure 2. Obviously, the 
non-parametric approach is the unique method that gives a reliable representation of the relationship between wind speed and 
boundary layer height measurements. Starting from this consideration, it was concluded that the non-parametric approach 
was the best adapted to the quantification of input uncertainties. This method was thus implemented in the tool we developed 
and results presented in the next sections are associated with it. Note that the PDF of input variables related to the 
characteristics of the release, the dispersion site, and receptors and grid heights were mainly defined from expert judgment. 
 
2.3 Steps 3 and 3’: Propagation methods and sensitivity analysis 
This step of the uncertainty analysis consisted in propagating the joint PDF of each input variable through the dispersion 
model to generate the PDF of the model results (ground level concentrations). Several methods were considered in this study 
from the cheapest (in terms of computational cost) to the most expensive ones: quadratic accumulation, polynomial chaos 
expansion and Monte-Carlo simulations. Actually, quadratic accumulation has been applied only to a few tests of sensitivity 
analysis when considering only some specific hours from the whole period under study (five years). As it was decided to use 
a non-parametric representation of input uncertainties, the polynomial chaos approach was not adapted since it requires the 
use of a parametric probabilistic model of input data. Monte Carlo simulations were then used to propagate input 
uncertainties through the Gaussian dispersion model GANACHE. Using Monte Carlo simulations with sufficiently large 
random sample, it is possible to accurately determine the mean of the variable of interest (here it corresponds to annual mean 
concentration) but also to conduct a statistical analysis of its probabilistic distribution. It is then possible to apply the 
following methods: 
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 Resampling (like bootstrap) to compute confidence intervals associated with statistical parameters (mean, 
percentiles, for example). 

 Extreme values analysis (analysis of the tail of the distribution) to evaluate high order percentiles. 
 Statistical inference to find an empirical PDF that the best fits the predicted concentration distribution. This method 

then allows to perform some statistical analysis of the PDF to derive quantities of interest (mean, confidence 
intervals, etc.). 

 
Some examples of the application of steps 1 to 3 are given in section 3. 
 
 

 
Figure 2.Scatter plot of boundary layer height against wind speed for : (a) five years observations, (b) random sample of 10000 elements 

from a parametric model with no dependencies between input variables, (c) random sample of 10000 elements from a parametric model with 
dependencies modelled by Gaussian copulas and (d) random sample of 10000 elements from a non-parametric model . 

 
 
3. APPLICATION OF THE APPROACH TO A PRACTICAL CASE STUDY 
 
3.1Case study 
The case under study considered a single release of inert gas of 50 m height with a diameter of 1 m. The source is located at 
the centre of a domain composed of 50 x 50 points using a horizontal resolution of 100 m. It was hypothesised that the 
release occurred in flat terrain with uniform roughness. These simplifications implied neglecting uncertainties associated with 
topography, obstacles, source geometry, physical and chemical transformations of pollutants. Numerical calculations were 
performed considering fixed receptors only. The receptors have been placed according to two particular wind directions 
identified from the dataset which has been used: one rather infrequent (direction D1) and the other frequently observed 
(direction D2). 
 
3.2Annual mean concentration computation 
Figure 3 and Table 1 present some results when focusing on the estimation of annual mean concentration computed using 
both a deterministic approach and Monte Carlo simulations. Generally, atmospheric dispersion simulations obtained with 
both the deterministic approach and the probabilistic one give pretty similar results. For example, when using the Doury 
parameterization and looking at ground level concentration prediction in direction D2 (Figure 3b), it is shown that 
deterministic and Monte Carlo simulations exhibit very similar values for receptors located between 1000 and 5000 m from 
the release. Whatever the approach used to characterize atmospheric stability (Doury or similitude theory), the main 
differences appear in the vicinity of the source, for receptors located at 500 m of the release. These differences are more 
important for wind direction D1, which is rarely observed. This may be explained by the fact that the non-parametric 
meteorological model may not fully represent infrequent wind directions(that is with the right frequency), that are mainly 
associated with weak wind speed. It is also interesting to look at the size of 95% confidence intervals associated with the 
estimation of annual mean concentrations (Table 1) that can be interpreted as a measure of the uncertainty related to the 
probabilistic computation of the average values. Note that increasing the size of the sample used for Monte Carlo simulations 
will necessarily led to a decrease of the size of 95% confidence intervals. 
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Table 1. Annual mean concentration computed for receptors located at a distance of 500 m from the pollutant release. Results are given for 
the five years deterministic run and Monte Carlo simulations (using the non-parametric meteorological model). 95% confidence intervals are 
also reported in square brackets. 
 
Approach Direction D1 Direction D2 
Doury – Deterministic (Five years) 3.57 4.83 
Doury – Monte Carlo simulations (sampling size 10000) 2.50 [2.31 ; 2.68] 4.57 [4.32 ; 4.83] 
Similitude – Deterministic (Five years) 1.32 2.35 
Similitude – Monte Carlo simulations (sampling size 10000) 1.08 [0.99; 1.17] 2,03 [1.92 ; 2.13] 

 
 

 
Figure 3.Mean concentration as a function of the distance from the source for (a) Doury/direction D1, (b) Doury/direction D2, (c) 

Similitude/direction D1 and (d) Similitude/direction D2. The blue curve is associated with an experiment that is not described in this paper. 
 
3.2Estimation of 95th percentiles of the predicted concentration 
Table 2 presents some results when focusing on the estimation of 95th percentiles computed using both a deterministic 
approach and Monte Carlo simulations. Note that the computation of percentiles is strongly sensitive to the physical and 
probabilistic models used for the study, so the following results must be considered with care. Table 2 shows that Monte 
Carlo simulations using similitude theory are able to reproduce 95% percentiles that are close to the deterministic ones (five 
years integration), or at least of the same order of magnitude. Generally, the use of the Doury approach led Monte Carlo 
simulations to strongly overestimate 95% percentiles values, particularly for receptors located in the wind direction D1. 
Studying the distribution of predicted ground level concentrations at 500 m from the release shown that histograms generally 
contained a large proportion of zero values (not shown). Nevertheless, small differences in the proportion of simulated values 
falling in classes associated with large concentrations values are observed between experiments. This main explain the 
variability of 95% percentiles that is observed when comparing deterministic and probabilistic approaches. For example, for 
the five years deterministic run using Doury classification, the 95% percentile at 500 m from the release in direction D1 is 
about 0.25 µg.m-3while the 97% percentile at the same location and for the same experiment is greater than 6µg.m-3.A 
detailed analysis of the results revealed the strong sensitivity of high order percentiles estimation to both the large proportion 
of simulated zero values and to the shape of the tail of simulated concentrations distribution. 
 
Table 2. 95th percentile of the predicted concentration computed for receptors located at a distance of 500 m from the pollutant release. 
Results are given for the five years deterministic run and Monte Carlo simulations (using the non-parametric meteorological model). 
 
Approach Direction D1 Direction D2 
Doury – Deterministic (Five years) 0.25 16.89 
Doury – Monte Carlo simulations (sampling size 10000) 13.84 38.98 
Similitude – Deterministic (Five years) 8.90 13.92 
Similitude – Monte Carlo simulations (sampling size 10000) 2.75 14.84 

 
 
4. PRESENTATION OF RESULTS ASSOCIATED WITH AN UNCERTAINTY ANALYSIS 
The presentation of the results of an uncertainty analysis is fundamental and the answer must be adapted to the audience. It is 
then necessary to present results that may be easily understood forgetting mathematical principles that were used to produce 
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them. We have then proposed few parameters that may be used to present results of a probabilistic LIA study. For a given 
variable of interest (annual mean for example), one may presents its probabilistic estimation, boundaries of a given 
confidence interval (giving the possible minimum and maximum values accounting for input uncertainties) and a probability 
of threshold exceedance. These parameters may be computed and plotted for calculations considering both specific receptors 
only and full grid as well. Figure 4 presents some examples for an idealized experiment conducted over a full simulation grid. 
 

 
Figure 4.Examples of graphical representation of the results of an uncertainty study: (a) average of the variable of interest, (b) probability of 

exceeding 12 µg.m-3, (c) upper and (d) lower boundaries of the 95% confidence interval of the calculated average. 
 

5. CONCLUSIONS AND PERSPECTIVES 
One of the main conclusions of this work is that we have developed a complete and operational chain for the treatment of 
uncertainties associated with atmospheric dispersion modelling. This chain contains all aspects of an uncertainty analysis 
from the quantification of uncertainties associated with input variables to the statistical postprocessing of predicted ground 
level concentrations (mean, percentiles, confidence intervals, threshold exceedance probabilities, etc.). The whole chain is 
based on Python scripts and is computationally efficient (parallelization of computation). The chain has been validated using 
a practical case study and now constitutes an operational and fully automatized tool that may be easily coupled to other 
Gaussian dispersion models (actually, the only modifications of the chain consist in modifying subroutines that deal with 
input and output files format of the model used). Among the various perspectives that may follow this study, we may think to 
apply this chain to computations on a whole simulation grid (here, only receptors were considered), extend our approach to 
other variables of interest (daily percentiles for example), use this tool for more complex case studies (with topography and 
multiple sources, for example) and coupling this chain with more complex dispersion models like CFD models (doing this, 
we will assess the feasibility of using this chain to conduct impact studies for both accidental and chronic releases). 
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