How to determine urban background concentrations from traffic flows in neighbouring street canyons?

Guido Cosemans, Luc Int Panis and Clemens Mensink

VITO
Centre for Integrated Environmental Studies
Mol, Belgium

Introduction

- Introduction
- Methodology
 - Emission calculations
 - Air quality modelling
- Results and discussion
- Conclusions

The problem

• A large class of street canyon models use:

$$C = C_{\text{street}} + C_{\text{background}}$$

- ➤ The urban background concentration is needed for every single hour in the calculation!
- ► Note that: P₉₈ ≠ P_{98,street} + P_{98,blickground}

Micro-simulation model Paramics

- micro-level:
 - · vehicles are modelled one by one
 - every time step: new position, speed, acceleration
- input:
 - infrastructure, traffic lights, traffic rules, speed limits,...
 - traffic demand, traffic behaviour
- ouput:
 - Position, speed and acceleration of the vehicle per time step

ssion-functions as plug-in for Paramics

- Emission functions are based on the extended dataset of VITO's on-the-road-vehicles emission measurements (VOEM) (De Vlieger, 1997).
- During these measurements the vehicle's speed and its instantaneous emissions of CO, CO₂, NOx, HC and PM were recorded at every second
- Emission functions were integrated into Paramics as a plug_in

Paramics output

- Summarized per hour and per square meter of road surface
- X, Y, CO, CO₂, NOx, HC and PM,
- sum of speeds, acceleration & number of cars,
- for each vehicle class (29 classes)
- XML output format
 - quite handy for data exchange
 - 1 Gb / scenario

processing Paramics output

- From square meter of road surface to meter along street axis
- Line sources for IFDM
- OSPM receptor / street canyon description every 10 m along street axis
- Intermediate results for Quality Control

IFDM

- Gaussian plume model
- More than 30 years of experience
- Used by a large community of air quality experts (more than 40 licences)
- At present the regulatory impact assessment model in Flanders

Results and discussion Introduction Methodology Emission calculations Air quality modelling Results and discussion Conclusions

Local traffic plan

- Drop of speed limits (70 \rightarrow 50 km/h; 50 \rightarrow 30 km/h)
- Altering driving direction in 12 one-way streets
- Introducing "sleeping policemen" on 6 intersections
- Downsizing important avenue from 2 x 2 to 2 x 1 lanes
- Constructing two new urban sites (425 productions and attractions in new OD-matrix)

Discussion

- PM_{2.5} concentrations decrease between 2003 and 2010 in every location in the area studied from 10% in less polluted streets to -70% in some of the worst polluted sites of this moment;
- Nearly all of this decrease may be attributed to the more stringent European emission standards for new vehicles;
- Local mobility plans have only little effect compared to the impact of the new European emission standards.

Discussion

- Extension of the methodology towards population exposure:
 - **≻**Static
 - ➤ Dynamic
- Activity based approach for surveying and modelling travel behaviour
- Development of an exposure model for activity based models (PhD)

Conclusions

- We realised a coupling between the street canyon model OSPM and the Gaussian model IFDM.
- Results for a city quarter in Ghent, Belgium, show that the background contribution from a nearby highway exit contributes substantially in streets with low to moderate traffic.
- Decreases in PM_{2.5} concentrations between 10% and 70% are expected between 2003 and 2010, due to more stringent EU emission standards.
- Mobility plans only show a limited effect.

Acknowledgements

- The authors would like to thank Ruwim Berkowicz for allowing the use of the OSPM model
- We want to thank Belgian Science
 Policy for their financial support (project
 CP/67 "An integrated instrument to
 evaluate effects of local mobility plans
 on traffic liveability and the
 environment").

