The MUST model evaluation exercise: Patterns in model performance

Helge R. Olesen*, A. Baklanov, J. Bartzis, F. Barmpas, R. Berkowicz, K. Brzozowski, R. Buccolieri, B. Carissimo, A. Costa, S. Di Sabatino, G. Efthimiou, J. Franke, I. Goricsan, A. Hellsten, M. Ketzel, B. Leitl, R. Nuterman, E. Polreich, J. Santiago, R. Tavares

*National Environmental Research Institute
University of Aarhus, Denmark

MODEL VALIDATION

- Processing of the experimental data
- What variables to compare?
- How should the variables be compared?
- How should the model be run and the results interpreted? (modelling inputs, set-up, post-treatment of outputs ...)
- Exploratory data analysis (Olesen et al.)
- Metrics for a Model Validation (Franke et al.)
- Quality acceptance criteria
- Baseline approach to model validation

Main message

- Exploratory data analysis is indispensable when you wish to assure quality!
- Look at data, explore them graphically!

Exploratory analysis in the case of the MUST exercise:

- An extensive set of available model results and tools.
- The tools are mainly Excel-based (developed by Ruwim Berkowicz)
- Results from a large number of model have been put into the same framework
- This gives us a unique opportunity to inspect data graphically, compare results, and identify and explore patterns.
- A big bonus: Anomalies are detected. Anomalies are often a symptom of errors.

What do we gain from the exploratory analysis within the MUST exercise?

- Detect anomalies
- Identify problems common to several models
- Get an indication of the state of the art
- Potential for digging deeper into cause and effect for model behaviour

MUST - MODELS INVOLVED

Models can be thought for general OR SPECIFIC applications, it is important to check their fitness for purpose when we use them for solving a problem or for a new application...

Computational Fluid Dynamics (CFD) models MISKAM

FLUENT

ADREA

STAR-CD

FINFLO

CFX

MITRAS

TSU/M2UE

VADIS

CODE_SATUR

15 GROUPS INVOLVED

>0° case: about 40 model flow results

≻-45° case: about 30

model flow results

≻-45° case: about 20

model dispersion

results

7 GROUPS INVOLVED

≻-45° case: about 10 model dispersion results

LASAT

ADMS-URBAN

RAMS

OML

ESCAPE

CALPUFF

Non-CFD models

MUST – Rules of the game as presented here

Rules: slide 1 of 2

- Focus on CFD models
- The validation data were measured in the wind tunnel in Hamburg
- 3 cases:

(0 degree flow)

- 45 degree flow
- 45 degree dispersion

Rules of the game for this presentation...

Rules: slide 2 of 2

- The same model can be represented several times, but run by different groups (e.g., Fluent was run by many groups).
- Tests with different resolutions etc. are not included here – only the modeller's preferred result.
- Each group is only represented once with each model (exceptions for Fluent/RSM and Fluent/k-e)
- Model names are not always disclosed

Note: What do I mean when I speak of a 'model version' during the next slides?

 It is a model, combined with the way that it is set up. E.g. Fluent, set up with a certain mesh and certain options, run by a specific group.

'Model version' := a model including its setup

Detailed example

- Are the models capable of predicting the u component of the wind?
- We consider the -45 degree flow case with measurements at 18 'towers'

Minus 45 degree flow

Minus 45 degree flow case – view from above

260 m

-45 degree flow Example of profile of u along a 'tower'

Roof top at 2.54 m

-45 degree flow, all towers u component above building roof

-45 degree flow, all towers u component below 1.25 m

-45 degree flow, u component all heights

Minus 45 degree flow case – view from above

260 m

- 45 degree flow

Cavtat, October 2008

10

- 45 degree flow

Cavtat, October 2008

National Environmental Research Institute, University of Aarhus, Denmark

-45 degree flow, u component all heights - Crossings

- 45 degree flow

Cavtat, October 2008

10

-45 degree flow, u component, all heights - Wide Streets

- 45 degree flow

Cavtat, October 2008

5

-45 degree flow, u component, all heights - Narrow Streets

- 45 degree flow

Cavtat, October 2008

5

Conclusion so far...

Referring to prediction of u component for the model setup in question (model Fluent):

- Crossings: good prediction
- Wide streets: good prediction
- Narrow streets: Clear underprediction for points below roof

u component, several models – Narrow streets (panel 1)

u component, several models – Narrow streets (panel 2)

u component, several models – Narrow streets (panel 3)

Common feature for models at -45 degree

 Narrow streets is too tough a challenge: u is underpredicted at low heights in 'Narrow streets'

Are the models capable of predicting the w component?

 Note: This is a difficult task. Vertical flow can go up and down, and the sign can vary even within a grid cell.

-45 degree flow, w component, all towers

-45 degree flow, w component, all towers

-45 degree flow, w component, all towers

Common feature for models at -45 degree

 Models have difficulty in reproducing w, in particular negative values of w

The power of exploratory analysis used on <u>a group of models</u>

- Similarities and differences stand clearly out, potential problems are revealed.
- An unusual pattern is often the symptom of some underlying problem (misplaced buildings, shifted coordinate systems)

Next example: Minus 45 degree dispersion case

Next example: Minus 45 degree dispersion case, Miskam A, 18 m

Next example: Minus 45 degree dispersion case, Miskam B, 18 m

Next example: Minus 45 degree dispersion case, Miskam C, 18 m

Next example: Minus 45 degree dispersion case, Fluent A, 18 m

Next example: Minus 45 degree dispersion case, Fluent B, 18 m

Next example: Minus 45 degree dispersion case, Fluent C, 18 m

Next example: Minus 45 degree dispersion case, Fluent D, 18 m

Next example: Minus 45 degree dispersion case, Model A, 18 m

Next example: Minus 45 degree dispersion case, Model B 18 m

Next example: Minus 45 degree dispersion case, Model C, 18 m

Next example: Minus 45 degree dispersion case, Model D, 18 m

Next example: Minus 45 degree dispersion case, Model E, 18 m

Minus 45 degree dispersion case, Miskam Ketzel 18 m

One option: Look at pairs of observations/model results

Hit rate: 0.74

Gaussian fitting

 The plume is so coherent that Gaussian fitting to measurements and model results makes sense.

Result of Gaussian fitting An x-y map

Result of Gaussian fitting An x-y map

Result of Gaussian fitting An x-y map

Result of Gaussian fitting An x-y map

Model B has the highest Rit Rate of all models!

Metrics alone do not assure quality!

Maximum concentration values, derived from Gaussian fitting

Some conclusions about dispersion

- Models predict the plume trajectory well with minor exceptions
- It is a common feature that models tend to overpredict the centerline concentration of the plume

Some conclusions about flow

- -45 degree flow case
 - u is predicted well in many locations, but 'Narrow streets' is too tough a challenge: u is underpredicted at low heights in 'Narrow streets'
 - Models have difficulty in reproducing w, in particular negative values of w
 - Models have difficulty in reproducing turbulent kinetic energy (TKE)

Availability of the tools and results

- A limited version of the Excel tools is available through the COST 732 web page.
- A full version will become available at that address
- Send a me mail if you wish to be notified when the full version goes public

Main message

 Exploratory data analysis is indispensable when you wish to assure quality!