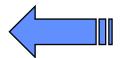
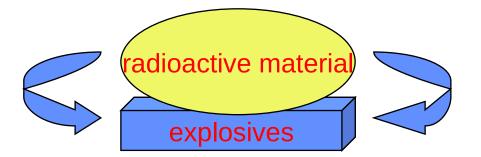
HANDLING "DIRTY BOMB"- SCENARIOS WITH THE LAGRANGIAN PARTICLE MODEL LASAIR

^{12th}International Conference on Harmonisation within Atmospheric Dispersion Modelling for Regulatory Purposes

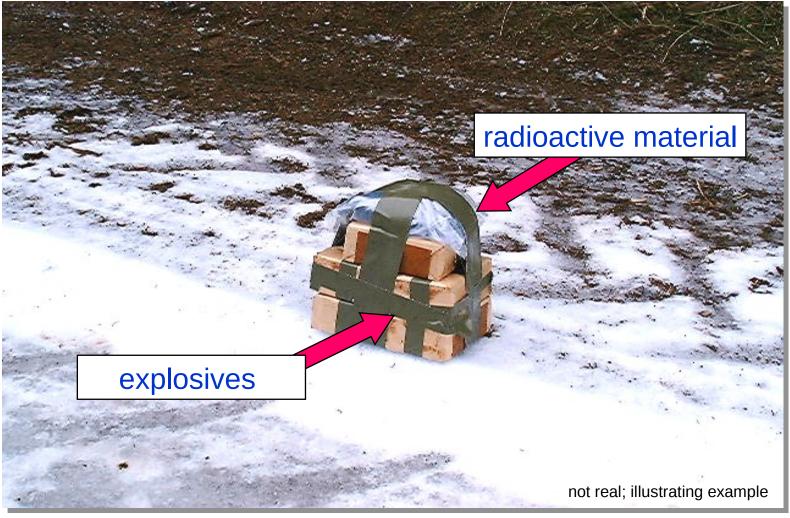

Cavtat, Croatia, 06. - 09.10.2008

Hartmut Walter Federal Office for Radiation Protection Ingolstädter Landstrasse 1 D - 85764 Oberschleissheim Germany

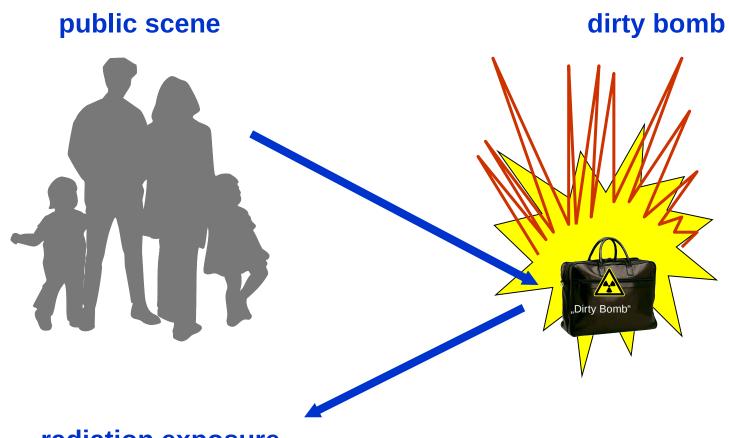


Definition of a "dirty bomb"

- IED Improvised Explosive Device
- RDD Radiological Dispersal Device



- RED Radiological Exposure Device
- IND Improvised Nuclear Device


Example of a "dirty bomb"

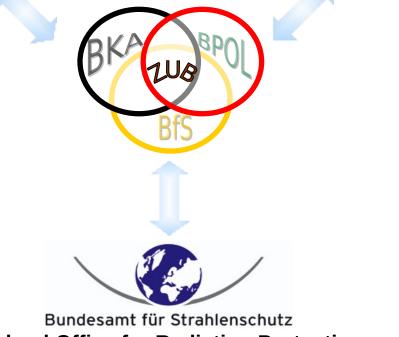
picture: Thielen, GRS

Effects after a "dirty-bomb" explosion

radiation exposure

Questions in a "dirty-bomb" scenario

- What's the size of the effected area?
- How long will the cloud be in that area?
- What is the amount of radiation exposure?
- Have people to be evacuated ?



Solution: Federal <u>Central Support Group</u> for Serious Radiological and Terroristic Events "CSG"

Federal Criminal Police Office

Federal Office for Radiation Protection

Some Extracted Tasks of the CSG

- Forecast of dispersion and prognosis of radiation exposure
- Determination of meteorological dispersion conditions
- Assessment of radiological consequences after an

explosion of a RDD

LASAIR

Programme for <u>Lagrange-Simulation</u> of the dispersion (*German: <u>Ausbreitung</u>*) and <u>Inhalation of Radionuclides</u>

Hartmut Walter German Federal Office for Radiation Protection

LASAIR Function and Aim

Taskuse of an expert systeme programmefor scientific support of the CSG

Aim easy and rapid simulation of atmospheric dispersion of radioactive substances with diagnostic windfield-model Lagrange-Particle-Model

and the computation of the <u>radiation exposure</u>

Example: "dirty bomb" scenario urban structures wind population ty / turbulence exposed area stabi . Statianeous release ???? e.q. 5 mSv CSG, fire brigades "Dirty Bomb" police rural structures deactivator

LASAIR input

Meteorology

- wind speed
- wind direction
- stability class

Release to the atmosphere

short term release

or

continuous release

Topography

individual roughness length

LASAIR

2 dimensional simulation

LASAIR output

Radionuclides

- activity in base layer
- deposition to the surface
- cloud arrival time
- computed for time intervals
- simultan. for 5 radionuclides

LASAIR

Exposition

- inhalation
- groundshine
- cloudshine

LASAIR features

- Lagrange particle model with 60.000 particles
- individual characterisation of the roughness length
- 2-dimensional flow model (no orographic structure)
- 5 radionuclides can be computed simultaneously
- user can choose out of approx. 860 radionuclides
- very quick response time (1 8 minutes)

LASAIR computation procedure

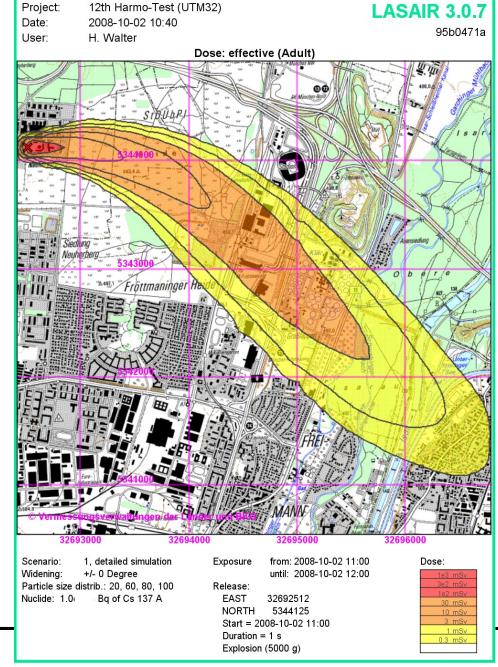
detection of a "dirty bomb" application of LASAIR (meteorology) with 1 Bq emission determination of radionuclides and measurement of activity application of LASAIR based on iterative improved measurements of activity radiation exposition


LASAIR main menue (meteorology)

	Cavtat			Scenario 1
Project Release Meteorology	Simulation Resu	lts Utilities	Configuration	
Time series of meteorological parame Date Time YD WS 2008-09-23 10:28 270 3.0 2008-09-23 10:58 220 2.0	DCL <<< in	sert Time Wind Wi te Dispe C neu Ane	neters variable over ti 2008–0 direction WD : nd speed WS : ersion class DCL : atral/unstable neters constant over ti ermometer height : bughness length : Land use class :	9-23 10:58 220 degree 2.0 m/s
In the panel Meteorology you can define the meteorological conditions for the simulations. <u>Parameter constant</u> <u>over time</u> apply for the whole dispersion calculation; <u>Parameter variable over time</u> are defined as time series. The data can be different for each scenario. The intensity of precipitation is not defined on this panel but rather on the panel Results . Parameter constant over time: The <u>Anemometer height</u> is the height above the ground in which the wind speed				

LASAIR main menue (indvidual roughness length)

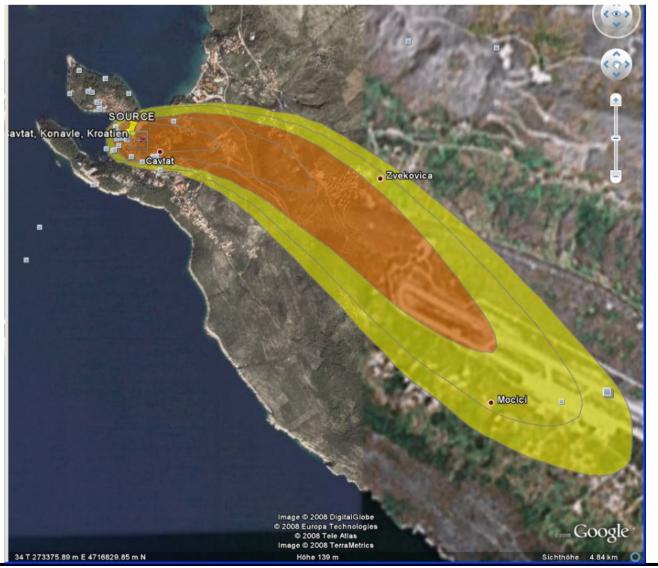
	Time :		2008-0	9-23	10:58
	Wind dire	ection V	VD :	220	degree
	Wind	speed V	VS :	2.0	m/s
	Dispersi	on class	DCL:		
	C neutra	il/unstal	ble	-	
	100				
$\langle $	Paramete	ers consta	nt over t	ime —	
		ers consta Ometer h			L 0 m
	Anemo		neight :		


Hartmut Walter German Federal Office for Radiation Protection

LASAIR main menue (results)

Cavtat						Scenario 1	-		
Project	Release	Meteorology	Simulation	Results	Utiliti	es Configu	ration		
Detailed simulation ▼ from : 2008-09-23 10:28 ▼ until : 2008-09-23 11:28 ▼									
۲	Inhalation d	ose	Person :	Adult		-			
0	 Activity 		Total/organ :	an : effective 🔽 🔽			Grap	phics	
Deposition		Use long list of nuclides				1e3 mSv 3e2 mSv			
Gamma-dose Nuclio			Nuclides a	les and released amounts (Bq):				1e2 mSv 30 mSv	
Including ground radiation		~	Ac 225 A	-	1.0e+12		10 mSv 3 mSv		
0	Gamma-act	livity	2		-	0.0e+00		1 mSv	
			~		-	0.0e+00		0.3 mSv	
	Wide	ning : 0 💌			-	0.0e+00		Display	
Pre	cipitation (m	ım/h): 0.0	~		-	0.0e+00			
In the panel Results you can specify the desired presentation of results. The <u>graphical representation</u> is displayed in the window that shows the maps.									
Firstly the scenario and the kind of simulation (survey or detailed simulation) must be selected for which the results are to be presented.									

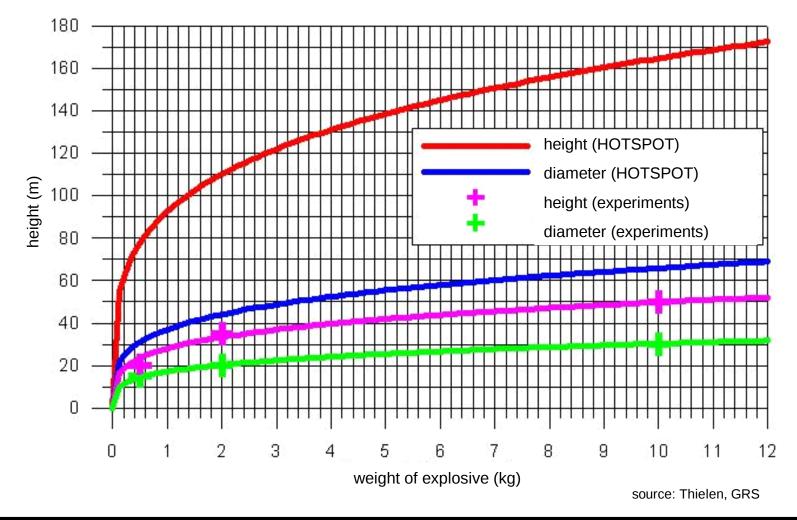
LASAIR main menue (results)



Test, not real

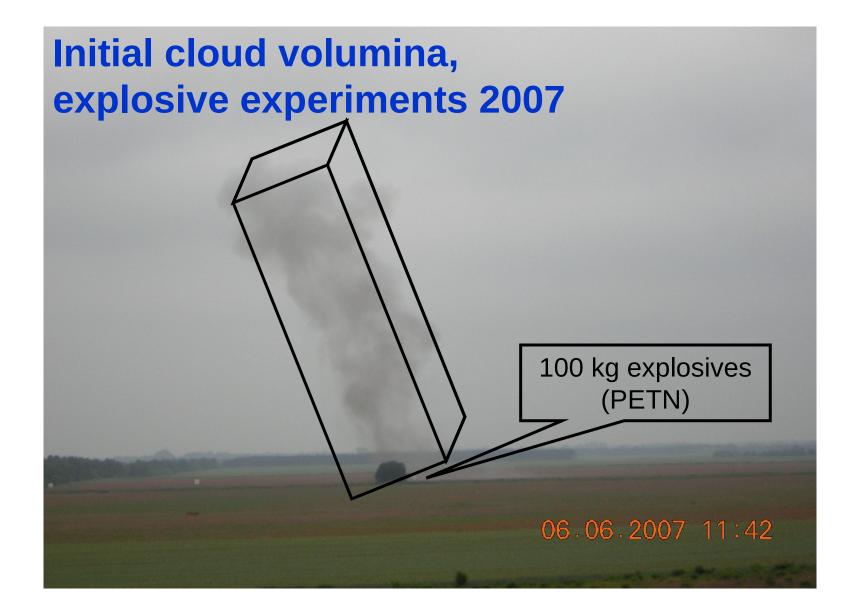
LASAIR main menue (results)

Test, not real


Hartmut Walter German Federal Office for Radiation Protection

LASAIR special features

• parameterisation of the individual cloud



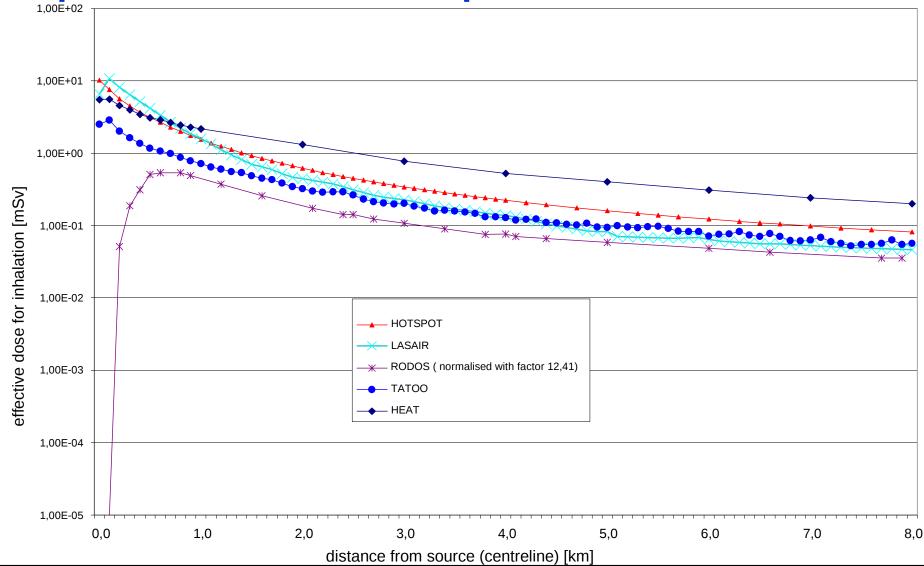
Initial cloud volumina Parametrisation after experiments

LASAIR comparison to other models

- HOTSPOT HOTSPOT 2.0.6
- HEAT Hazard Estimation After Tbm engagement (Version 5.5)
- LASAIR Lagr. Sim. of Dispersion and Inhalation of Radionuclides
- **RODOS** Real Time Online Decision Support System
- TATOO Threat Analysis Tool
- HOTSPOT, RODOS: Gaussian Models
 all others are Lagrange Particle Models

Meteorological Conditions for the comparison in case "C02":

 wind speed wind reference height wind profile 	3 m/s 10 m adjusted to LASAIR boundary layer model for HEAT and TATOO,				
	adjusted to windspeed in 10 m for HOTSPOT and RODOS				
wind direction	constant				
 roughness length 	0,2 m (varies in RODOS in the first three cells downwind)				
 atmospheric stability 	C, neutral to slightly unstable				
 height of inversion 	800 m (RODOS approximately 1000 m)				


Basic input parameters in the comparison for all models

size of aerosols
size of aerosols
size of aerosols
amount of explosives
n.n.
nuclide
cs 137
dose coefficient
3.9 x 10⁻⁸ Sv/Bq
source activity
breathing rate
3.8 x 10⁻⁴ m³/s

 $0 \le x \le 10 \,\mu m$ 10 $\mu m < x$

Comparison of different dispersion models

Hartmut Walter German Federal Office for Radiation Protection

Conclusions from the comparison

- four models show in general a very good agreement
- the models differ in the close vicinity downwind from the source
- no significant difference between GM and LPM (in this comparison!)
- the model RODOS differs to the others, but the main effects can be explained

Conclusions for the model LASAIR

- the model LASAIR has been developed since several years
- has proved its ability during various applications and exercises
- it's a simple tool
- is easily to handle
- needs only basic relevant meteorological and radiological input information
- it is based on a powerful dispersion model (LASAT) (harmonisation process in Germany)
- runs on an ordinary laptop
- can be used either close to the site of crime or as a back office tool
- LASAIR is able to handle a "dirty bomb"-scenario and provides reasonable results compared to other models but
- LASAIR output results are limited according to the input data (don't expect more than you put in !)

