A validation study of the ADMS plume chemistry schemes

17th International Conference on Harmonisation within Atmospheric Dispersion Modelling for Regulatory Purposes 9-12 May 2016 Budapest, Hungary

Contents

- Modelling NO_x chemistry
 - Where does NO₂ come from?
 - NO_x chemistry reactions
 - Modelling a plume
 - NO_x chemistry modelling schemes
- Validation
 - Considerations when validating NO_x chemistry
 - Case study: Wainwright
 - Case study: Prudhoe Bay

This study was funded by **BP International Limited**.

Modelling NO_x chemistry Where does NO₂ come from?

 Downwind of an industrial source, NO₂ arises from three main contributions:

Long-range transport & long timescale chemistry

- Ambient background level of NO₂ in the atmosphere.
- Long-range transport of emissions and long timescale chemical reactions.

Primary emissions of NO₂

- A proportion of NO_x is emitted as NO₂.
- Proportion depends on source type, typically between 5% and 25% for industrial sources.

Secondary NO₂ from short timescale chemical reactions

- Away from local sources of NO_x, the background proportion of NO₂ is typically 70% - 95%.
- Secondary NO₂ comes primarily from the oxidation of NO.

Modelling NO_x chemistry NO_x chemistry reactions

- Two short timescale chemical reactions are considered
 - The creation of NO₂:

The photolysis of NO₂ by sunlight:

- O₃ comes from atmospheric background not emitted from sources
- Other chemical reactions occur, but over longer timescales and with species less abundant in an industrial setting.

Modelling NO_x chemistry Modelling a plume

Industrial NO_x source e.g. generator, power plant, boiler, etc.

Ensemble plume chemistry

 Assumes O₃ well mixed along whole plume

- Chemistry occurs in ensemble plume
- Conservative prediction of NO₂

Instantaneous plume chemistry

- Accounts for amount of background O₃, NO_x and NO₂ entrained into plume
- Chemistry occurs in instantaneous plume
- More theoretically accurate prediction of NO₂

Considerations when validating NO_x chemistry

- Two aspects should be considered for NO₂ validation:
 - Dispersion processes accuracy of NO_x
 - Chemistry processes accuracy of NO₂
- Not possible to determine NO₂ accuracy independently of NO_x accuracy
- NO₂ performance must be considered in relation to NO_x validation
 - Ideally NO₂ performance would be similar to NO_x performance
 - Cannot expect NO₂ performance to be good if NO_x performance is poor

Note

 Restrict comparisons to appropriate wind directions and hours, when source plume impacts monitors

Case study: Wainwright

- Validation of ADMS 5 NO_x chemistry with Wainwright dataset:
 - Small, diesel powered power plant in Alaska
 - 5 short stacks, similar to building height, mostly single stack operation
 - Measurement campaign over 12 ½ months
 - Single receptor point

Case study: Wainwright

NO_x results (µg/m³)

Observed Mean	43
Modelled Mean	26
R	0.79
Fac2	0.52
Observed Max	370
Modelled Max	140

Case study: Prudhoe Bay

- Oil drilling rig on the North Slope of Alaska
- Measurement campaign over 40 days
- Three largest sources modelled
- One monitor, very close to sources
- Measured NO_x, NO₂ and O₃ concentrations
- Measured met conditions

Case study: Prudhoe Bay

NO_x results (µg/m³)

Observed Mean	190
Modelled Mean	160
R	0.68
Fac2	0.56
Observed Max	850
Modelled Max	550

Case studies: Results

Case study: Wainwright – NO₂/NO_x ratios

- Comparing NO₂/NO_x ratios gives good indication of chemistry performance
- Time-paired comparisons
- Instantaneous plume chemistry compares better with observed NO₂/NO_x

Case study: Prudhoe Bay – NO₂/NO_x ratios

Observed NO_x (µg/m³)

0 - 100

100 - 200

200 - 300

- Two chemistry schemes perform similarly
- Instantaneous plume chemistry predicts slightly more accurate NO₂/NO_x
- Better prediction for higher NO_x concentrations

Observed NO_x concentration (μg/m³) range

Ensemble Plume Chemistry Modelled NO₂/NO_x 0.2 Instantaneous Plume Chemistry Modelled NO₂/NO_x 0.2 0.6 0.2 0.4 8.0 Observed NO₂/NO_x

Comparing modelled/observed ratios

 Insightful to compare modelling performance of NO₂ to modelling performance of NO_x

Case studies: Results

Summary

- ADMS NO_x chemistry validation for two schemes using two Alaskan case studies
- NO₂ model performance considered in the context of NO_x model performance
 - Concentrations, NO₂/NO_x ratios and modelled/observed ratios were used to determine performance of chemistry models
- Both chemistry schemes compared well for both case studies
 - Ensemble plume chemistry predicted higher NO₂ concentrations than instantaneous plume chemistry
 - Instantaneous plume chemistry NO₂ concentrations compared better to measurements, when considered alongside modelled NO_x performance

Thank you for listening

Any questions?

