A validation study of the ADMS plume chemistry schemes 17th International Conference on Harmonisation within Atmospheric Dispersion Modelling for Regulatory Purposes 9-12 May 2016 Budapest, Hungary ### **Contents** - Modelling NO_x chemistry - Where does NO₂ come from? - NO_x chemistry reactions - Modelling a plume - NO_x chemistry modelling schemes - Validation - Considerations when validating NO_x chemistry - Case study: Wainwright - Case study: Prudhoe Bay This study was funded by **BP International Limited**. # Modelling NO_x chemistry Where does NO₂ come from? Downwind of an industrial source, NO₂ arises from three main contributions: #### Long-range transport & long timescale chemistry - Ambient background level of NO₂ in the atmosphere. - Long-range transport of emissions and long timescale chemical reactions. ### Primary emissions of NO₂ - A proportion of NO_x is emitted as NO₂. - Proportion depends on source type, typically between 5% and 25% for industrial sources. #### Secondary NO₂ from short timescale chemical reactions - Away from local sources of NO_x, the background proportion of NO₂ is typically 70% - 95%. - Secondary NO₂ comes primarily from the oxidation of NO. # Modelling NO_x chemistry NO_x chemistry reactions - Two short timescale chemical reactions are considered - The creation of NO₂: The photolysis of NO₂ by sunlight: - O₃ comes from atmospheric background not emitted from sources - Other chemical reactions occur, but over longer timescales and with species less abundant in an industrial setting. # Modelling NO_x chemistry Modelling a plume Industrial NO_x source e.g. generator, power plant, boiler, etc. # Ensemble plume chemistry Assumes O₃ well mixed along whole plume - Chemistry occurs in ensemble plume - Conservative prediction of NO₂ # Instantaneous plume chemistry - Accounts for amount of background O₃, NO_x and NO₂ entrained into plume - Chemistry occurs in instantaneous plume - More theoretically accurate prediction of NO₂ # Considerations when validating NO_x chemistry - Two aspects should be considered for NO₂ validation: - Dispersion processes accuracy of NO_x - Chemistry processes accuracy of NO₂ - Not possible to determine NO₂ accuracy independently of NO_x accuracy - NO₂ performance must be considered in relation to NO_x validation - Ideally NO₂ performance would be similar to NO_x performance - Cannot expect NO₂ performance to be good if NO_x performance is poor #### **Note** Restrict comparisons to appropriate wind directions and hours, when source plume impacts monitors # **Case study: Wainwright** - Validation of ADMS 5 NO_x chemistry with Wainwright dataset: - Small, diesel powered power plant in Alaska - 5 short stacks, similar to building height, mostly single stack operation - Measurement campaign over 12 ½ months - Single receptor point # **Case study: Wainwright** ## NO_x results (µg/m³) | Observed Mean | 43 | |---------------|------| | Modelled Mean | 26 | | R | 0.79 | | Fac2 | 0.52 | | Observed Max | 370 | | Modelled Max | 140 | # Case study: Prudhoe Bay - Oil drilling rig on the North Slope of Alaska - Measurement campaign over 40 days - Three largest sources modelled - One monitor, very close to sources - Measured NO_x, NO₂ and O₃ concentrations - Measured met conditions # **Case study: Prudhoe Bay** ## NO_x results (µg/m³) | Observed Mean | 190 | |---------------|------| | Modelled Mean | 160 | | R | 0.68 | | Fac2 | 0.56 | | Observed Max | 850 | | Modelled Max | 550 | ### **Case studies: Results** # Case study: Wainwright – NO₂/NO_x ratios - Comparing NO₂/NO_x ratios gives good indication of chemistry performance - Time-paired comparisons - Instantaneous plume chemistry compares better with observed NO₂/NO_x # Case study: Prudhoe Bay – NO₂/NO_x ratios Observed NO_x (µg/m³) 0 - 100 **100 - 200** **200 - 300** - Two chemistry schemes perform similarly - Instantaneous plume chemistry predicts slightly more accurate NO₂/NO_x - Better prediction for higher NO_x concentrations Observed NO_x concentration (μg/m³) range **Ensemble Plume Chemistry** Modelled NO₂/NO_x 0.2 Instantaneous Plume Chemistry Modelled NO₂/NO_x 0.2 0.6 0.2 0.4 8.0 Observed NO₂/NO_x ## Comparing modelled/observed ratios Insightful to compare modelling performance of NO₂ to modelling performance of NO_x ## **Case studies: Results** # **Summary** - ADMS NO_x chemistry validation for two schemes using two Alaskan case studies - NO₂ model performance considered in the context of NO_x model performance - Concentrations, NO₂/NO_x ratios and modelled/observed ratios were used to determine performance of chemistry models - Both chemistry schemes compared well for both case studies - Ensemble plume chemistry predicted higher NO₂ concentrations than instantaneous plume chemistry - Instantaneous plume chemistry NO₂ concentrations compared better to measurements, when considered alongside modelled NO_x performance # Thank you for listening Any questions?