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Abstract: This paper presents an improved version of a STE adaptive algorithm based on probabilistic Bayesian inference 
(AMIS) that estimates the complete distribution of the source term parameters in case of an adverse (accidental or malevolent) 
atmospheric release. After introducing the STE problem in a probabilistic manner, we describe the proposed Bayesian 
inference algorithm with the use of the Lagrangian Particle Dispersion Model (LPDM) in backward mode. The enhanced 
procedure is illustrated with a synthetic example, using Retro-SPRAY, the backward implementation of SPRAY, the LPDM of 
the PMSS suite. 
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INTRODUCTION 
 Hazardous releases into the atmosphere may result from diverse circumstances, most often accidents or, less 
frequently, criminal activities. In some cases, the releases may happen insidiously without obvious trace (like 
smoke or an explosion). However, surreptitious releases might be detected by a network of sensors or people in 
trouble. Therefore, the quick and efficient identification of the source location and strength of the emission is of 
prime importance for the plants operators and rescue teams. Atmospheric dispersion modelling and mathematical 
methods can help in reconstructing the source term parameters, given a set of measurements coming from sensors. 
While the problem is challenging due to its ill-posed nature, several methods have been developed in the field of 
source term estimate (STE). Most of them rely on an optimization problem where a cost function has to be 
minimized using least squares or genetic algorithms, e.g. (Winiarek, 2012). 
 Another possibility is the probabilistic Bayesian approach which yields several upsides as it allows the 
incorporation of both model and observational errors and the use of potential prior information about the source. 
The framework provided by Bayesian analysis reformulates the point estimation problem as the search of the 
posterior probability density function of the source parameters. Several related examples exist in the literature, 
that use the notorious Markov Chain Monte Carlo (MCMC) algorithm, such as (Delle Monache et al., 2008), 
(Keats et al., 2007) or (Yee et al., 2014).  Nevertheless, these MCMC techniques are prone to several issues, 
regarding the inherent burn-in time necessary before the convergence, or the choice of how to initialize properly 
the Markov chain. In this study, we focus on an alternative Bayesian method called Adaptive Multiple Importance 
Sampling (AMIS). As presented in (Rajaona et al., 2015), adding an advanced adaptive layer to the classical IS 
scheme allows us to obtain promising results for STE problems in a correct amount of time, compared to state-of-
the-art methods. 
 Unfortunately, the computational time of such stochastic simulation-based techniques are highly dependent of 
the dispersion model used. Indeed, for each generated sample of the location of the source, a novel forward run 
has to be performed to evaluate the likelihood of the measurements. In complex urban environment, elaborate 
model, typically based on the use of a large number of Lagrangian particles, has to be used to have an accurate 
evaluation of the dispersion which is therefore time-consuming to run several times during the procedure. 
 This paper presents an improvement of the original method, aiming at optimizing the most time-consuming 
step in the algorithm by using the duality relationship with adjoint models for evaluating concentrations. 



Moreover, the output of the dispersion model in backward mode is also efficiently utilized both in the 
initialization step and the “defensive” component of the adaptive proposal distribution to improve the convergence 
speed and the robustness of the proposed inference approach, respectively. 
 
PROBLEM FORMULATION 
 

Atmospheric dispersion model 
 In this study, we consider a point-wise and static source fully characterized by the parameter 𝜽 = (𝒙𝒔, 𝒒) with 
𝒙𝒔 = (𝑥*, 𝑦*) corresponds to the spatial position of the source and 𝒒 is the release rate vector resulting from the 
discretization of the plausible emission time interval into 𝑇* time steps. The concentration is considered to be 
observed by 𝑁. sensors deployed over a 2-dimensional monitoring region. The measured concentration acquired 
by the 𝑖-th sensor at time 𝑡1  is defined as: 
 

𝑦2,1 = 3𝑞5𝐶2,1(𝒙𝒔,Δ𝑡5)
89

5:;

+ 𝜖2,1 (1) 

where 𝑗 = 1, … , 𝑇.  with 𝑇. the number of time samples collected by each sensor. Each measurement results from 
the superposition of the 𝑇* releases on the different time steps {Δ𝑡5}5:;

89  weighted by their associated emission 
rates {𝑞5}5:;

89  of the source plus an error term, 𝜖2,1 . 𝐶2,1(𝒙𝒔, Δ𝑡5) corresponds therefore to the mean concentration 
observed by the 𝑖-th sensor at time 𝑡1  if a unitary release is made during the time step Δ𝑡5 from a source that is 
located at 𝒙𝒔.The random variable term 𝜖2,1 encompasses the three classical types of error: the dispersion 
modelling error, the observation error and the representativeness error due to the interpolation in both time and 
space of the dispersion model (Koohkan and Bocquet, 2012). As mentioned in (Yee, 2008), the choice of a 
Gaussian noise is justified by bringing forward the argument of the maximum entropy principle (Jaynes, 2003), 
which stipulates that such an assumption represents a maximally uninformative state of knowledge. All the 
measurements obtained at the different time samples of all sensors can be written in the following matrix form: 
 

 𝒚 = 𝑪(𝒙𝒔)𝒒 + 𝝐 (2) 

where 𝒚 = F𝑦;,;,… , 𝑦;,8G,… , 𝑦HG,;,… , 𝑦HG,8GI
8
is the vector of observed concentration values and 𝑪(𝒙𝒔), generally 

called source-receptor matrix (Seibert and Frank, 2004), takes the following matrix form: 
 
 

𝑪(𝒙𝒔) = J
𝐶;,;(𝒙𝒔,Δ𝑡;) ⋯ 𝐶;,;L𝒙𝒔,Δ𝑡89M

⋮ ⋱ ⋮
𝐶HG,8G(𝒙𝒔, Δ𝑡;) ⋯ 𝐶HG,8GL𝒙𝒔,Δ𝑡89M

P (3) 

 

 As in (Yee, 2009), the likelihood distribution is given using a spatially and temporally independent zero-mean 
Gaussian multivariate random variable by: 
 

 𝑝(𝒚|𝜽) = 𝓝(𝒚;𝑪(𝒙𝒔)𝒒, 𝜎VW𝑰HG8G) (4) 
 

where 𝑝(𝒚|𝜽) = 𝓝(𝒚; 𝝁, 𝚺) corresponds to the multivariate normal distribution evaluated in 𝒚 with mean vector 
𝝁 and covariance matrix 𝝁 and 𝑰HG8G represents the identity matrix of size (𝑁.𝑇. × 𝑁.𝑇.). 
 The computation of the source-receptor matrix in Eq. (3) is an important part in an STE procedure as it links 
the source's characteristics with the measurements. It quantifies the predicted concentration value at some location 
and time from a dispersion model for a given source. The computation of this matrix with a Lagrangian Particle 
Dispersion Model (LPDM) in a forward mode constitutes the most time-consuming step of the algorithm proposed 
in (Rajaona et al., 2015). As in (Keats et al., 2007) and (Yee et al., 2008), we use also a receptor-oriented 
atmospheric transport model for the prediction of the source-receptor relationship in their Bayesian inference 
procedure for the rapid computation of 𝑪(∙). 
 

Specification of prior knowledge about parameters 
 Specifying the prior consists in representing our belief about the unknown state 𝜽 using probability 
distributions before obtaining any observations. In this work, we consider that a source can be anywhere 
uniformly in some spatial surveillance area, denoted by Ω ⊆ ℝW, i.e. 𝑝(𝒙𝒔) = 𝓤a(𝒙𝒔). Depending on the scenario, 
more informative distribution could be used in order to take into account that the source is more likely to be on 
some specific area (nuclear plants, industrial sites, etc.). 
 As in (Winiarek et al., 2011), a multivariate Gaussian distribution is considered as prior for the emission rate 
vector: 
 

 𝑝(𝒒) = 𝓝(𝒒; 𝝁𝒒,𝚺𝒒) (5) 
 



Bocquet (2008) points out that this is a crude approximation as the source emission rate vector should not have 
negative values, yet this simple assumption is often used in atmospheric dispersion inverse modelling with 
reasonable performances (Issartel and Baverel, 2003).  
 

Source term estimation in a Bayesian framework 
 In this work, a Bayesian solution is considered in order to solve efficiently this challenging problem. Instead of 
just a point-wise estimation of the source characteristics, 𝜽, we are therefore interested in obtaining the full 
posterior distribution of the unknown parameters, 𝑝(𝜽|𝒚), which completely characterizes the available 
information on 𝜽 given the measurements 𝒚 obtained from all the sensors deployed in the field. With such a 
quantity, one can obtain all possible quantities of interest about the parameters such as, for example, point 
estimates or confidence intervals. In this problem, the posterior distribution of interested can be expanded as 
follows: 
 

 𝑝(𝜽|𝒚) = 𝑝(𝒙𝒔, 𝒒|𝒚) = 𝒑(𝒒|𝒚, 𝒙𝒔)𝑝(𝒙𝒔|𝒚) (6) 
 

 Owing to the Gaussian assumption of both the likelihood in Equation (4) and the prior distribution of 𝒒 in 
Equation (5), the rule of conjugate priors states that the conditional posterior of the source emission rate 
𝒑(𝒒|𝒚, 𝒙𝒔) is therefore Gaussian and can thus be evaluated analytically. 
 Unfortunately, the second term 𝑝(𝒙𝒔|𝒚) in the complete posteriori distribution of interest in (6) is analytically 
intractable. Indeed, the dependence of the position of the source in the measurements is highly nonlinear due to 
the complex structure of the source-receptor matrix 𝑪(𝒙𝒔). By using such a decomposition, instead of having to 
approximate the full posterior distribution 𝑝(𝒙𝒔, 𝒒|𝒚), only the posterior marginal distribution 𝑝(𝒙𝒔|𝒚)	needs 
finally to be approximated since an analytical expression for 𝒑(𝒒|𝒚, 𝒙𝒔) can be obtained. In this work, we consider 
efficient stochastic simulation-based algorithms to approximate this complex posterior distribution 𝑝(𝒙𝒔|𝒚). 
 

PROPOSED BAYESIAN ALGORITHM TO STE 
 

An adaptive method: the AMIS algorithm 
To approximate the marginal posterior distribution 𝑝(𝒙𝒔|𝒚) in Eq. (6), we resort to an adaptive version of the 

Importance Sampling algorithm (Robert and Casella, 2004), which consists, at the 𝑡-th iteration, in: 
1. Drawing a population of 𝑁d samples,  e𝒙𝒔,f; ,… , 𝒙𝒔,f

Hgh, from a proposal distribution 𝜙(𝒙𝒔;𝜑f) 

2. Computing the importance weights 𝑤f2 =
dl𝒙𝒔,f2 m𝒚n
o(𝒙𝒔,p

q ;rp)
  

3. Adapting the parameters 𝜑 of the proposal distribution 𝜙(𝒙𝒔;𝜑f) using the generated random weighted 
samples s𝒙𝒔,f2 ,𝑤f2 	t2:;

Hg  so that it tends to fit the posterior distribution we try to approximate 𝑝(𝒙𝒔|𝒚). 
The target distribution of interest, 𝑝(𝒙𝒔|𝒚) here, is thus approximated by an empirical measure, thus leading to the 
following approximation of the full posterior distribution defined in Eq. (6): 
 

 
𝑝(𝒙𝒔, 𝒒|𝒚) ≈33𝑤vf2𝒑L𝒒w𝒚, 𝒙𝒔,f2 M𝛿𝒙𝒔,pq

Hg

𝒊:𝟏

(𝒙𝒔)
𝑻

𝒕:𝟏

 (7) 

 

where the 𝑤vf2 are the normalized importance weights (i.e. 𝑤vf2 = 𝑤f2 }∑ ∑ 𝑤f
1Hg

1:;
8
f:; �

�;
) and 𝛿(∙) is the Dirac 

function. The main novelty between both traditional adaptive IS and the AMIS is the use in the latter of all the 
collection of particles drawn at the previous iterations by using a recycling scheme to improve both the learning 
of the proposal and the accuracy of the approximation of the target distribution (in the PMC only the particles 
form the last iteration are used). Using every single simulated particle at every step of this iterative algorithm 
could therefore lead to a significant improvement as shown in (Cornuet et al., 2012). 
 

On efficient use of the LPDM in backward mode 
 As mentioned previously, the computation of the source-receptor matrix in Eq. (3) with a Lagrangian particle 
dispersion model (LPDM) in a forward mode constitutes the most time-consuming step of the AMIS algorithm 
proposed in (Rajaona et al., 2015). As a consequence, in this study, we propose to use the duality relationship 
mentioned in (Keats et al., 2007) by running a backward LPDM to fill the source-receptor matrix, thus drastically 
reducing the computational complexity of the overall Bayesian inference procedure. 
 Moreover, we propose to use the outputs of the backward LPDM runs to design an efficient procedure to 
automatically set the initial parameters, 𝜑�, of the adaptive proposal distribution of the AMIS. As already 
remarked in (Cornuet et al., 2012), the starting distribution has clearly a major impact on the resulting 
performances of such adaptive sampling algorithms. Indeed, it is quite difficult to recover from a poor starting 
sample since the adaptivity is only based on the visited regions of the simulation space. In this paper, we propose 



to use a mixture of 𝐷 normal distributions and an additional “defensive” component which will remain unchanged 
through adaptive procedure, i.e.: 
 

𝜙(𝒙𝒔; 𝜑f) = 𝛼(�)𝜙(�)(𝒙𝒔) + (1 − 𝛼(�))3𝛼f
(�)𝓝(𝒙𝒔;𝝁f

(�), 𝚺f
(�))

�

�:;

 (8) 

The aim of the static component is to guarantee that the importance function remains bounded whatever happens 
during the adaptation, thus guaranteeing a finite variance. However, it is preferable to keep 𝛼(�)	as low as possible 
(e.g. 𝛼(�)=0.1) to not limit the performances achievable by the adaptation procedure. As a summary, the 

parameters 𝜑f  to be adapted during the 𝑡-th iteration of the AMIS consists in e𝛼f
(�), 𝝁f

(�), 𝚺f
(�)h

�:;

�
. 

 The proposed initialization consists in fitting the adaptive components of the mixture to a spatial map obtained 
from the backward runs of the LPDM. More precisely, this spatial map is resulting from the cumulative weighted 
sum of binary retro-propagation maps (obtained after thresholding using a plausible level of associated release 
rate) from all the sensors with a weight of (+1) and (-1) for those that have been activated or not activated, 
respectively, during the considered period of time. 
 

NUMERICAL EXPRIMENTS 
 

      The dispersion simulations are carried out using Parallel-Micro-SWIFT-SPRAY (PMSS). Originally, Micro-
SWIFT-SPRAY (MSS) (Tinarelli et al. 2013) was developed in order to provide a simplified, but rigorous CFD 
solution of the flow and dispersion in built-up environments in a limited amount of time. MSS is constituted by 
the local scale, high resolution, versions of the SWIFT and SPRAY models. SWIFT is a 3D terrain-following 
mass-consistent diagnostic model taking account of the buildings and providing the 3D fields of wind, turbulence, 
and temperature. SPRAY is a 3D LPDM able to account for the presence of buildings. Both SWIFT and SPRAY 
can deal with complex terrains and evolving meteorological conditions as specific features of the release like 
heavy or light gases. More recently, SWIFT and SPRAY have been efficiently parallelized in time, in space, and 
in numerical particles leading to the PMSS system (Oldrini et al., 2017). Furthermore, the SPRAY dispersion 
model can be run in direct mode (from the source to a number of sensors) but also in the retrograde mode (from 
sensors where detections are possibly made to areas indicating the possible locations of sources) which has been 
used in this paper. As illustrated in Figure 1, we considered an urban area of 1.1km ×	0.9km × 1.6km meshed at 
an horizontal and vertical resolution of 2 meters. Unit releases emitted each minute from the 20 sensors over a 45-
minute period were simulated in a backward mode, during which weather conditions varied gradually from a 
west-northwest wind to a north-northeast wind. 

 
Figure 1. Scenario under study – Left: 20 sensors (red) & 1 source (green).  

Right: Measurements obtained every minute by the 20 sensors from 09:00 to 09:45. 
 

     To assess the performances of the inference procedure, 𝑁d = 100 particles are drawn during 𝑇 = 20 iterations 
and the proposal distribution is composed of a mixture of 𝐷 = 9 adaptive components that are initialized using 
our proposed fitting procedure of the spatial map from the backward LPDM. As seen in Figure 2, the results 
illustrate good estimation performances for both the source location and the release rate. 

 
Figure 2. Results of the AMIS for STE. Left and middle: estimation of 𝑝(𝑥*|𝒚)   and 𝑝(𝑦*|𝒚) (red) and the true value 

(dashed black). Right: Mean of  𝑝(𝒒|𝒚, 𝒙�𝒔) (black) and ±2σ confidence interval (grey) compared to the ground truth (red). 



 

     Figure 3 clearly highlights the large benefit of using the proposed initialization strategy for the AMIS. The use 
of such a procedure based on the output of the backward LPDM allow us to sample particles in region of high 
interest directly in the first iterations of the algorithm, thus leading to a more rapid convergence to the correct 
solution. 

 
Figure 3. Comparison of the mean squared error between the true source position and the approximated posterior mean at the 

different iterations of the AMIS with and without the proposed initialization strategy. 
 

CONCLUSION 
In this report, an enhanced version of the adaptive algorithm based on probabilistic Bayesian inference originally 
proposed in (Rajaona et al., 2015) that estimates the parameters of the source term in case of an atmospheric 
release is described. More precisely, we firstly propose to use the backward mode of the dispersion model in order 
to avoid multiple forward runs, a time-consuming task within the iterations of the algorithm. Then, we propose to 
also use the output of this backward run in order to efficiently design the initial parameters of the adaptive 
proposal distribution. As a consequence, the algorithm is faster to converge since the proposal is better initialized. 
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