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Urban Air Pollution

Liu and Wong (2014)

Piringer et al. (2012)
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Background

• Gaussian plume dispersion model

• Skin-friction coefficient
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where c is the mean pollutant concentration, U the mean wind speed in the streamwise
direction, z the distances from the ground-level in vertical direction, zc the emission height, Q
the pollutant emission rate and σz the vertical dispersion coefficient. 
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where τw is the shear stress induced by the bottom rough surface, ρ the fluid density, U∞ the 
free-stream velocity, u* the friction velocity estimated using Reynolds stress (Cheng and 
Castro, 2002; Ploss et al., 2000).
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Objective
• To parameterize the vertical dispersion coefficient σz in 

the Gaussian model using skin-friction coefficient C f
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Theory
• Dispersion coefficient, which is a function of atmospheric 

turbulence, surface roughness & distance from the pollutant 
source x, can be described by the K-theory
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• K can be approximated by the friction velocity u* and mixing 
length δ, as follows

where K is the diffusivity & t the pollutant traveling time

*uK 

• Dispersion coefficient can thus be expressed in terms of u* & Um
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• OR 1 2 1 2 1 4

z fx C   
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Methodology

Hot-wire probe

Humidity sensor
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Source 

(x = 0)10h67.5h 60h 52.5h 45h 37.5h 30h 22.5h 15h

AR=1/2

AR=1/4

AR=1/8

AR=1/12

Methodology

U

Measurement cases Case L1 Case L2 Case L3 Case L4 Case H1 Case H2 Case H3 Case H4

Free-stream U∞ 3.28 3.31 3.28 3.29 6.66 6.61 6.70 6.60

Rib [mm] Size h 19 19 19 19 19 19 19 19

Separation b 38 76 152 228 38 76 152 228

Aspect ratio AR (= h/b) 1/2 1/4 1/8 1/12 1/2 1/4 1/8 1/12

Note: L denotes lower wind speed measurements, H denotes higher wind speed measurements.
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Measurement cases
Low Wind Speed (U∞ ≈ 3.3 m sec-1) High Wind Speed (U∞ ≈ 6.6 m sec-1)

Case L1 Case L2 Case L3 Case L4 Case H1 Case H2 Case H3 Case H4

Aspect ratio AR (= h/b) 1/2 1/4 1/8 1/12 1/2 1/4 1/8 1/12

Boundary layer thickness δ [mm] 240 260 285 265 245 265 285 260

Wind speed U∞ [m sec-1] 3.28 3.31 3.28 3.29 6.66 6.61 6.70 6.60

Friction velocity u* [m sec-1] 0.184 0.215 0.222 0.224 0.382 0.449 0.474 0.468

Cf (= 2u*
2 /U∞

2) [×10-3] 7.958 10.351 12.223 11.883 8.352 11.413 12.973 12.835

Re∞ (= U∞δ/ν) 78,720 86,060 93,385 83,810 163,252 175,165 190,950 168,300

Re* (= u*δ/ν) 4,422 5,597 6,328 5,721 9,356 11,904 13,503 11,938

Measurement Parameters



Velocity & Turbulence Profiles

Increasing 
roughness
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Vertical profiles of dimensionless pollutant concentrations measured over the street canyons with aspect ratios  (a) 

1/2, (b) 1/4, (c) 1/8, (d) 1/12 at x = 10h (□); 15h (△); 22.5h(▽); 30h (▷); 37.5h (◁); 45h (◇); 52.5h (+); 60h (-); 

67.5h (○) at free-stream speed U∞= 3.3 m/s and x = 10h (■); 15h (▲); 22.5h(▼); 30h (▶); 37.5h (◀); 45h (◆); 

52.5h (*); 60h (#); 67.5h (●) at free-stream speed U∞ = 6.6 m/s. Also shown is the theoretical Gaussian-form 

pollutant distributions (dark solid line). Measurement results at x = 9h (□); 15h (□); 22.5h (□); 30h (□) at 

free-stream speed U∞ = 6.8 m/s from Salizzonic et al. (2009). 

Gaussian distribution
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Vertical profiles of dimensionless concentrations measured at different streamwise locations over street canyons with 

aspect ratios 1/2 (□) 1/4 (△), 1/8 (◇), and 1/12 (○) at free-stream speed of (a) 3.3 m/s and 1/2 (■) 1/4 (▲), 1/8 (◆), 

and 1/12 (●) at free-stream speed of (b) 6.6 m/s.

Widening the obstacle separation

Increasing the downstream distance
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Vertical dispersion coefficients in the streamwise locations over street canyons with aspect ratios 1/2 (□) 

1/4 (△), 1/8 (◇), and 1/12 (○) at free-stream speed of (a) 3.3 m/s and 1/2 (■) 1/4 (▲), 1/8 (◆), and 1/12 

(●) at free-stream speed of (b) 6.6 m/s.

Vertical dispersion coefficient



Plume Dispersion over Hypothetical Urban Areas: 
Computational Model & Laboratory Measurements

Objective
Parameterize the dispersion coefficient σz in the 
Gaussian models using friction coefficient Cf.

Major Findings

Consistent 
agreement 

between Lab & 
CFD results 

Impact
Conventionally σz is 
determined based on 
atmospheric stability 
that overlooks urban 
morphology. The 
results helps excel 
the functionality of 
the well-received 
Gaussian model for 
urban dispersion. 

Oct 2017

Complementary Solution Approach



Summary

The pollutant concentrations exhibit the conventional 

Gaussian distributions, suggesting the feasibility of using 

water vapor as a passive scalar in wind tunnel experiments. 

A strong positive correlation between σz & x1/2 δ1/2 Cf
1/4 (r2 = 

0.933) is revealed from wind tunnel experiments. The 

analytical & empirical solutions formulate the basic 

parameterization of plume dispersion over urban areas.
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