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Predicted 
contaminated 
zone

Enlarged zone

▌In case of an accidental release

Forecast wind 
direction

« real » plume 
transport direction
• Release time
• Release height
• Wind direction change
• Orography…

 The uncertainties are very strong
 The model cannot predict some events

Fukushima: no model 
was able to predict
the north-western 
deposition area !

 A reliable estimation of uncertainties is crucial

Context

Context Meteorological ensembles Uncertainty propagation Perspectives

R. PERILLAT – Using meteorological ensembles for atmospheric dispersion modeling of 

the Fukushima nuclear accident. HARMO18 October 12th 2017

A deterministic aproach is used
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▌ Deposition velocities and scavenging coefficients: 1 scalar per species

 Complex structures, spatial and temporal correlations
 Meteo and source term are the main sources of uncertainties
 How to determine a realistic distribution ?

What are the uncertain input variables ?

▌ Source term: release height, kinetics (emitted quantity as a function of time) for 
each species, composition (isotopic ratios) 

▌ Meteorological fields: Wind, rain, stability… 2D or 3D field as a function of time

Context Meteorological ensembles Uncertainty propagation Perspectives

R. PERILLAT – Using meteorological ensembles for atmospheric dispersion modeling of 

the Fukushima nuclear accident. HARMO18 October 12th 2017

Precipitation Wind
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Model
parameters
Model
parameters

Input dataInput data

Ensemble

simulations

Sensitivity analysis

Sampling

Crude perturbations 
(homogeneous 
factors…)

First step: global sensitivity analysis 
methods of Morris, Sobol

What is the influence of input variables ?

Goals: 
 Classify variables as a function of their influence
 Discriminate non-influent, negligible variables
 Quantify the proportion of output variance

explained and the interactions

Context Meteorological ensembles Uncertainty propagation Perspectives
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How to quantify the uncertainty of data ?

▌ MRI (from Sekiyama et al) 
ensemble: 

 High-resolution

 High-frequency assimilation

 Representative of analysis error (a 

posteriori)

▌ ECMWF ensemble: 
 crude resolution (horizontal & vertical)

 24 hour–forecast (Assimilation at 00h each 

day, used between T0 and T0+24h)

 Representative of forecast error 

 Representative of data used in a emergency  ?

Context Meteorological ensembles Uncertainty propagation Perspectives

Using meteorological ensembles ensures physical consistency !

MRI data ECMWF data

Members 20 50

Grid resolution 3 km 0.25°

Vertical levels
Sigma levels

15 levels below 2000 m
Pressure levels

5 levels below 5000 m

Time step 1 hour 3 hours

Assimilation time 
step

3 hours 24 hours

R. PERILLAT – Using meteorological ensembles for atmospheric dispersion modeling of 

the Fukushima nuclear accident. HARMO18 October 12th 2017
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21/03 09h 21/03 09h 21/03 15h 21/03 09h 21/03 09h 21/03 15h

10-m wind 
direction

How to validate the input data uncertainties?

ECMWF

 Is the ensemble is representative of the uncertainties propagated in our model?

 Comparison to 10-m wind and rain observations (AMEDAS network)

Context Meteorological ensembles Uncertainty propagation Perspectives

10-m wind 
speed

MRI
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Raphaël Périllat- Sensitivity analysis of a short distance atmospheric dispersion model 

applied to the Fukushima disaster – 2015/07/06 - © IRSN

How to validate the input data uncertainties?
 What is a rank histogram ?

Ensemble

Observations

The rank of an observation is the 

number of ensemble members that are 

under this observation.

 The rank histogram is a way to show how
reliable an ensemble is compared to a set of
observations.

Under-dispersed ensemble Over-dispersed ensembleWell dispersed ensemble

Exemples of Rank histogram:

Context Meteorological ensembles Uncertainty propagation Perspectives
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10-m wind 
speed

How to validate the input data uncertainties?

MRI
ECMWF

 Rank histogram

Context Meteorological ensembles Uncertainty propagation Perspectives

▌ ECMWF ensemble is more widespread that the MRI ensemble

▌ The observations are often outside the ensemble: the ensemble may under-estimate the 
meteorological variability close to the ground

 Do we need to perturb these ensembles ? (HARMO 2016)

▌ These ensemble are worth to be used for uncertainty propagation 
 The plume’s dispersion does not always depend on near-ground variables
 the uncertainties may accumulate along the plume trajectory

R. PERILLAT – Using meteorological ensembles for atmospheric dispersion modeling of 

the Fukushima nuclear accident. HARMO18 October 12th 2017



9

Uncertainty propagation
▌ IRSN’s Gaussian puff model pX (Korsakissok et al, 2013)

▌ MRI and ECMWF ensembles 

▌ Seven source terms from the literature
 Mathieu et al, 2012
 Terada et al, 2012
 Saunier et al, 2013
 Katata et al, 2015
 Stohl et al, 2011
 Winiarek et al, 2012
 IRSN’s inverted source term with long-distance model and MRI 

deterministic meteorological data

▌ No additional perturbation on source term

▌ No perturbation of physical parameterizations

▌ Comparison to gamma dose rate stations in the Fukushima 
prefecture, and to 137Cs deposition measurements from 
airborne measurement at the end of the emergency

Context Meteorological ensembles Uncertainty propagation Perspectives
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▌ The spread of the simulations ensemble is quite large compared to the observation 
variation. The small variability of the meteorological data allows to create large 
variability in the dispersion results. 

▌ Some events are sometimes not well represented…

 Goal: to encompass gamma dose rate observations

Context Meteorological ensembles Uncertainty propagation Perspectives

MRI ensemble ECMWF ensemble

Ensemble + 7 source terms

R. PERILLAT – Using meteorological ensembles for atmospheric dispersion modeling of 

the Fukushima nuclear accident. HARMO18 October 12th 2017
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▌ The two ensembles underestimate the high values of deposition 

▌ These rank diagrams are obtained by using only the ensemble and 7 source terms, which 
means that several uncertainties are not taken into account

Next step: full Monte Carlo with all uncertainties

 Goal: to encompass Cs-137 deposition observations

Ensemble + 7 source terms

Context Meteorological ensembles Uncertainty propagation Perspectives

MRI ensemble ECMWF ensemble

R. PERILLAT – Using meteorological ensembles for atmospheric dispersion modeling of 

the Fukushima nuclear accident. HARMO18 October 12th 2017



12

Monte Carlo simulations:

Perturbations of the input:

Variable Perturbation

Meteorological fields Draw between the member of the ensemble

Stability calculation method [Turner, LMO, Gradient]

Source term [Mathieu, Stohl, Terada, Katata, Winiarek, SaunierECMWF, SaunierMRI]

Source term amplitude LogNormal (×3, ÷3) at 95%

Source term time shift Normal (+3H, −3H) at 95%

Source term altitude Uniform [20, 150]

Dispersion method [Doury, Pasquill, Similarity]

Deposition coefficient LogNormal [0.5, 5] at 95%

Scavenging coefficient LogNormal [0.005, 0.05] at 95%

Context Meteorological ensembles Uncertainty propagation Perspectives

R. PERILLAT – Using meteorological ensembles for atmospheric dispersion modeling of 

the Fukushima nuclear accident. HARMO18 October 12th 2017

 500 perturbed runs
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▌ The Monte Carlo results have a larger spread than the crossed simulations between the 
meteorology and the source terms. 

▌ Some events are still not well represented

 Goal: to encompass gamma dose rate observations

Context Meteorological ensembles Uncertainty propagation Perspectives

ECMWF ensemble

Monte Carlo simulations:

MRI ensemble

R. PERILLAT – Using meteorological ensembles for atmospheric dispersion modeling of 
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▌ The ensemble results are a bit over-dispersed but embrace the observations

▌ There is a bias for the MRI ensemble

▌ Several simulations are under all observations in the two ensembles: 
 The inputs are over-dispersed
A threshold on the observation limits the rank histogram

 Goal: to encompass Cs-137 deposition observations

Monte Carlo simulations

Context Meteorological ensembles Uncertainty propagation Perspectives

MRI ensemble ECMWF ensemble
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The use of Monte Carlo simulations in emergency 

Threshold: 3e5

Probability maps

▌ The Monte Carlo results can be used to estimate the probability of an event to happen

Mean

Maximum

Minimum

Quantile 75%

Quantile 25%

Evolution of the operational distances

▌ These tools could allow a better decision making in case of an emergency 

Context Meteorological ensembles Uncertainty propagation Perspectives

R. PERILLAT – Using meteorological ensembles for atmospheric dispersion modeling of 

the Fukushima nuclear accident. HARMO18 October 12th 2017



16

Conclusion and perspective

▌Monte Carlo results
 The small variability of the meteorological data allows to create large 

variability in the dispersion results
 The ensemble results are a bit over-dispersed but embrace the observations
 Importance of taking into account all uncertainties (Monte Carlo)

▌Improvement of the results
 Calibration of the inputs uncertainties
 Taking into account the observation error

▌In the future: Adaptation for operational purposes

PhD of Ngoc Bao Tran LE (Poster  H18-140) 
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Feel free to send me an e-mail for more discussion: 
perillat@phimeca.com


