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Abstract: The Air Quality Model Evaluation International Initiative (AQMEII) has been active since 2010 with the
aim of building a coordinated international effort on regional scale air quality modelling and evaluation, involving the
modelling communities of North America and Europe. Over the years several dozen modelling groups from both
continents have applied their modelling systems to common exercises, simulating air quality for a target year and
delivered their results to a shared platform with a high level of harmonisation where they were evaluated against an
extensive collection of available observations. The third and most recent phase of the activity was initiated in 2014
and is now nearing its completion.

Our experience suggests that the widespread practice of scoring the models using aggregate error metrics does not
allow a comprehensive understating of error causes, and that the discussion about ‘goodness’ or ‘badness’ of a model
based on such a practice can become sterile as it i) does not target the source of the error, ii) does not indicate if the
model is doing the right thing for the right reason, and consequently iii) does not provide enough information for
model development and improvement. Within AQMEII we have introduced the error apportionment method, where
aggregated error metrics are used for time scale analysis and error qualification. Although this methodology provides
a much clearer indication of the time scale and the type of model error with respect to conventional operational model
evaluation, it still does not permit the unequivocal attribution of errors to specific processes.

We therefore argue that evaluation needs to evolve from a practice into a discipline designed to objectively and
diagnostically develop and demonstrate viable performance evaluation techniques for regional air quality modelling
systems.
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INTRODUCTION

Evaluation of geophysical models is typically carried out under the theoretical umbrella proposed by
Murphy in the early 1990s for assessing the dimensions of goodness of a forecast: consistency ( ‘the
correspondence between forecasters' judgments and their forecasts’), quality (‘the correspondence
between the forecasts and the matching observations’), and value (‘the incremental benefits realised by
decision makers through the use of the forecasts’) (Murphy, 1993). Since 2010, the Air Quality Model
Evaluation International Initiative (AQMEII, Rao et al., 2011) has focused on the quality dimension of air
quality model hindcast products, aiming at building an evalution strategy that is informative for
modellers as well as for their users.

Our claim is that the value of a model’s result depends strictly on the guality of the model that, in turn,
depends on a sound evaluation. Operational metrics usually employed in air quality evaluation (e.g. error,
bias, correlation) have several limitations: interdependence (they are related to each other and are
redundant in the type of information they provide), underdetermination (they do not describe unique error
features), and incompleteness (how many of these metrics are required to fully characterise the error?).

Over the three phases of AQMEII, the ozone error produced by the suites of modelling systems
participating in the activity has not — on average— decreased (Figure 1) (although there are individual
models that have improved their accuracy constantly). There is a need to understand what components of



the model require improvement, including the errors introduced in the models from input fields of
emissions and boundary conditions.

* MSE Europe* * MSE North America*

150 00 250 300
100 150
L L

ppb?
ppb?

8 -

- | it AP - | et 20 &P e
Aawenn raveiz A Aaven Aaomere ravers

Figure 1. Range of variability of the Mean Square Error (MSE) of the suites of AQMEII models for surface ozone in

Europe (left) and North America (right). The composition of the ensemble, the modelled year and the features of the

models (on-line coupled models were used for AQMEII2) vary substantially among the different editions of
AQMEIL.

Following the requests from modellers to help diagnose the source of modelling error, the main aims of

this study are to move towards tools devised to enable diagnostic interpretation of model errors and to

advance the evaluation strategy outlined in the course of the three phases of AQMEII. This study attempts
to:

e  Attribute, where possible, the type of error to processes by utilizing modelling runs with modified
fluxes at the boundaries (anthropogenic emissions and deposition at the surface, and boundary
conditions at the bounding planes of the domain) and breaking down the mean square error (MSE)
into bias, variance and covariance;

o  Identify the time scales (or frequencies) of the error of modelled ozone and investigate the
periodicity of the ozone error which can be symptomatic of recursive (either casual or systematic)
model deficiencies.

METHODOLOGY AND RESULTS

We use the suits of regional scale models participating in the three phases of AQMEII and extensively
described in a number of publications (http://agmeii.jrc.ec.europa.cu/publications.html). The models are
applied to the continental domains of Europe and North America and evaluated using surface network
measurements. In this study the focus is on surface ozone.

To aid diagnostic interpretation, the mean square (or quadratic) error MSE (MSE = E[mod-obs]) is
decomposed according to

—_— _—2
MSE = (mod - ObS) + (o — 0,)% + 20,,0,(1 — 1) = bias? + var + covar Eql

where o, and o, are the modelled and observed standard deviation, var and covar are the variance and
covariance operators, r is the linear correlation coefficient, and bias is the time averaged offset between
the mean modelled and observed ozone concentration.

The error breakdown reported in Figure 2 shows that, to the extent that outputs from the three phases are
comparable, the median values as well as the overall distribution of the error components have not
improved significantly over the years but have rather stayed constant or have changed only slightly. Very
little information about the actual causes of modelling error can be gained from the error breakdown, and
it actually raises more questions than it helps to answer: Why is the bias of the AQMEII3 models in North
America higher than then the bias of the previous phases? Is the covariance showing a decreasing trend
over both continents due to model improvement or due to casual error compensation?
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Figure 2. MSE breakdown for the three phases of AQMEII. Europe on the left and North America on the right

Aiming to identify the time scales (or frequencies) of the error we have advanced the analysis of the error
components based on Eq 1 by apportioning them to four relevant time scales: the base line (LT), synoptic
(SY), diurnal (DU), and intra-day (ID) components, each representing a range of processes in a specific
spectral range (details are given in Solazzo and Galmarini, 2016 and Solazzo et al, 2017a). The deviation
of the modelled from the observed spectral component is informative about the time scale of the
process(es) causing the error.

According to the results of Figure 3, the bias accounts for the largest share of the error, followed by the
covariance of the diurnal fluctuations (having a periodicity of 0.5 to 1.5 days). Since the bias reflects
systematic errors while the covariance is due to timing error, we can now advance informed hypotheses
about the possible causes of the models error. For instance, the systematic model over-prediction can be
due to error in deposition, missing processes (such as forest canopy removal) and an excess of precursor
emissions (all of these causes are backed by evidence, summarised in Solazzo et al., 2017b). The error
due to timing of the ozone signal can be introduced by errors in the radiative energy balance causing a too
early (or late) boundary layer growth and/or collapse (Solazzo et al., 2017b).

Aiming to associate the error to the process, in the third phase of AQMEII two modelling systems
(Chimere and CMAQ), operated respectively by the INERIS institute in France and by the US EPA in the
US) have been used to perform a series of sensitivity simulations aimed at a better understanding of the
causes of differences between the base model simulations and observed data, including : i) one annual run
with zeroed anthropogenic emissions (referred to as ‘zero Emi’); ii) one annual run with a constant value
of ozone at the lateral boundaries of the model domain (referred to as ‘zero BC’ and ‘const BC’, and iii)
one run with ozone dry deposition velocity set to zero (referred to as ‘zero Dep’) (Figure 4). Full details
are provided in in Solazzo et al. (2017b).
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Figure 3. MSE (ppb?) breakdown into bias squared, variance and covariance for the spectral components of the
spatial average time series of ozone during the months of May to September 2010. By construction, the bias is
entirely accounted for by the base line (LT) component. The signs within the bias and variance portion of the bars
indicate model overestimation (+) or underestimation (-) of the bias and variance. The colour of the covariance share
(mMSE in the legend is a proxy for the covariance) of the error is coded based on the values of r, the correlation
coefficient, according to the colour scale at the bottom of each plot. Top panel: continental Europe; lower panel:
south-east US.

The results of the error breakdown for the sensitivity runs are reported in Figure 4. While the
zeroing/modification of input of ozone from the lateral boundaries causes a shift of the ozone diurnal
cycle in both CMAQ and Chimere, the response of the two models to a modification of anthropogenic
emission and deposition fluxes is very different. For CMAQ, the effect of removing anthropogenic
emissions causes a shift and a flattening of the diurnal curve (bias and variance error), while for Chimere
the effect is restricted to a shift. In contrast, setting the ozone dry deposition velocity to zero causes a shift
(bias error) for CMAQ, while a profound change of the error structure occurs for Chimere with significant
impacts not only on the bias but also the variance and covariance terms. Furthermore, several
investigations indicate that the dynamics of the boundary layer is responsible for a recursive (systematic)
daily error. The most revealing indicator is the analysis of the ACF and PACF of the time series of ozone
residuals (Figure 5) that shows a marked daily periodicity: the 24-hour errors are highly associated
throughout the year, i.e. the error repeats itself with daily regularity. Analyses of the error periodicity of
primary species (to exclude the role of chemical transformations) and of the scenario with zeroed
anthropogenic emissions (to exclude the role of emissions) have shown the same error structure, pointing
to boundary layer processes as the main cause of daily error.

CONCLUSIONS

Based on the lesson learned after almost 10 years of model evaluation within AQMEII, we suggest that
evaluation methods aiming to improve the models need to be diagnostic in focus. Air quality models have
grown in complexity beyond the capacity of developers to control each process in isolation and so should
evaluation techniques. Continuous improvements in process physics have the advantage of enhancing the
variability, but improving the representation of variance can inflate the bias (and often the opposite is true
as well). Bias correction methods, although successful in removing the offsetting error, have the
considerable shortcoming of removing potential systematic, cumulative errors, thus masking the nature
and source of the error. Although having exploited several evaluation frameworks over the past ten years
within AQMEII (operational, diagnostic, and probabilistic) the goal of clearly associating errors to
processes has not yet been achieved. As already suggested in the conclusions of the collective analysis of
the AQMEII3 suite of model runs summarised by Solazzo et al. (2017), future model evaluation activities
would benefit from incorporating sensitivity simulations and process specific analyses that help to
disentangle the non-linearity of the many model variables, possibly by focusing on smaller modelling
communities.
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Figure 4. MSE decomposition for June — August hourly ozone into bias?, variance and covariance for Europe (top)
and North America (bottom). Results are presented separately for daylight hours (left) and night-time hours (right)
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Figure 5. Auto and partial autocorrelation of the deviation of the Chimere (top) and CMAQ (bottom) models form
the observation for two sub-regions of Europe and North America, respectively (the x-axis reports the lag in hours)
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