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Abstract: Air quality has improved in Europe in the last decades, but exceedances of limits values are still observed, 

mainly in hot-spots at regional and city level. A dimension shift (from “Europe-wide” to “local” exceedances) calls for 

novel approaches to regional air quality management, to complement existing EU-wide existing ones. The SHERPA 

modelling tool has been developed for this reason, to support regional/local decision makers in designing air quality 

plans, and to support (more in general) the evaluation of the impact on air quality of locally-tailored policies.  The 

model implements surrogate modelling techniques to mimic, in a quick way, the behaviour of fully-fledged physically-

based models. Given that SHERPA is used in the policy arena, it of utmost importance to evaluate its robustness, 

against all kinds of uncertainty.  To do so, sensitivity analysis (SA) techniques can be applied. Sensitivity analysis are 

important ingredients for the quality assurance of models used in evidence-based policy. They reveal links between 

assumptions and predictions, help in model simplification and may show unexpected relationships between input and 

output.  One of the SHERPA modules, predicting air quality improvement linked to emission reduction scenarios, is 

evaluated in this paper. As SHERPA is a model with spatially-varying coefficients and inputs, the SA has been 

performed on a number of selected European cities. The results confirm the robustness of the SHERPA model, and 

help identify where prioritise further model improvement. 
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INTRODUCTION 

Air quality has strongly improved in Europe in the last decades (EEA, 2016), but exceedances of the 

legislation limit values still persist, mainly for pollutants as ozone (O3), nitrogen dioxide (NO2) and 

particulate matter (PM10 and PM25). While in the past years these exceedances were wide-spread across 

Europe, they now tend to concentrate in specific regions or cities (Kiesewetter et al., 2015). This changed 

situation calls for novel approaches tailored to local air quality management, to complement EU-wide 

existing policies. 

 

Recently, the SHERPA (Screening for High Emission Reduction Potentials on Air quality) modeling tool 

has been developed (Clappier et al., 2015, Thunis et al., 2016, Pisoni et al., 2017), as a tool to support 

regional/local decision makers to design air quality plans. It is distributed with default data covering the 

whole Europe and allows decision makers to work on his own regional domain. It can be used without the 

need to perform complex scientific/technical tasks beforehand.  

 

As the tool will be used in the policy arena, it is of utmost importance to evaluate its robustness/uncertainty. 

In this paper we apply Sensitivity Analysis (SA) on the SHERPA “scenario analysis” module (Thunis et 

al., 2016). This module allows to estimate how concentrations change for a given emission reduction 

scenario. This module is used as a basis for all SHERPA modules and is therefore the key element to test.  



As SHERPA is a model characterized by spatially-varying coefficients and inputs, this SA has been 

performed on a selected number of cities (London, Milan, Utrecht, Konstanz, and Helsinki; even due to 

lack of space only London is here shown), representative of different meteorological and emission 

inventory conditions. In particular, global sensitivity analysis (GSA) has been carried out using the popular 

variance based methods described in (Saltelli et al., 2010). The results provide information on the level of 

robustness of the model output, and allow for evaluating where future modelling effort should focus, to 

improve the SHERPA model in an effective way. 

 

METHODOLOGY 

The main goal of this work is to evaluate the robustness of the SHERPA model, using indicators to evaluate 

its sensitivity. The two main instruments applied in this study, the “SHERPA model” itself and the 

“sensitivity analysis indicators” are presented in the next subsections. 

 

The Sherpa model 

SHERPA has been developed to provide a fast modeling approach to calculate concentration fields resulting 

from emission reduction scenarios, mimicking the behavior of a full Chemical Transport Model (CTM). 

The aim of SHERPA is to mimic the CTM’s behavior with a more simple relation derived from a set of full 

CTM simulations built with various emission reduction scenarios. This set of scenarios should be 

sufficiently varied (in terms of concentration changes responses to emission changes) to provide SHERPA 

training phase with enough data variability.  

 

In SHERPA emissions and concentration changes are computed on a cell by cell basis according to the 

following equation: 
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where the delta concentration (ΔC) in a destination grid cell “i” is expressed as a linear combination of the 

aggregated emissions delta  
kjE ,  for each “k” source cell and precursor “j”. The kjia ,, coefficients are 

estimated using the results of a statistical analysis performed on all available CTMs simulations (base-case 

and scenarios) over the entire modelling domain performed with the air quality model. This analysis shows 

that the correlation between iC  (at one receptor cell “i”) and kjE ,  (at source cell “k”) decreases with 

“dik“, the distance between these two cells (“i” and “k”). It has been assumed that the coefficients “a” in 

the previous equation follow a similar trend to this correlation and can therefore be approximated by the 

following distance-function:      
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where “i” is a grid cell within the domain in which the concentration delta is estimated, the index “k” runs 

over all grid cells within the domain and “dik“ is the distance between cells ‘i” and “k”. The two unknowns 

α and ω need to be defined for each precursor and each grid cell (see Pisoni et al., 2017, for more details).   

 

After  and have been computed, SHERPA can be used to evaluate concentration changes resulting from 

any emission reduction scenario. The current SHERPA implementation (Pisoni et al., 2017) will be used to 

perform the uncertainty and sensitivity analysis. 
 

Sensitivity analysis approach 

In this paper Global sensitivity analysis (GSA) is used, to overcome the drawback of the Once-at-a-time 

(OAT) approaches, i.e. making use of methods (such as variance based techniques, regression/correlation, 

graphical tools…) based on the simultaneous exploration of all uncertain inputs and thus being able to 

capture nonlinearities and interactions among model input. GSA allows a fully exploration of the input 

space, in order to exhaustively assess the output uncertainty.  

 

Variance–based techniques are based on the decomposition of the total variance of the model output into 

terms of increasing dimensionality (Sobol’, 1993). These methods are model independent, are capable to 

highlight interactions among the model inputs (including non–linear, non–additive models), and when 



applicable, they allow an analysis (and uncertainty decomposition) based on groups of inputs. As for all 

GSA techniques, the drawback of variance–based measures is their computational cost and the potential 

necessity of calculating higher-order terms. Also, each investigated input must be characterized by a 

probability density function (p.d.f.).The method of Sobol’ (Sobol’, 1993) allows computing the terms of 

the variance decomposition, in a quite intuitive way, by estimation of a multidimensional integral through 

Monte Carlo (MC) techniques.  

 

 

 

 

This is the so-called ANOVA decomposition over the space k where the total variance of the output is the 

sum of the Vi (1st order effect), the Vij that measure the joint effect of the pair (Xi, Xj) on Y (2nd order 

effect), and the V12...k for the higher order interactions.  

 

Through the previous equation we can then compute all the relevant terms for Sensitivity Analysis. The 

conditional variance V[E(Y|Xi)] is known as the first-order effect of model input Xi on the model output 

Y. This conditional variance, divided by the total variance V of the model output (normalization), defines 

the sensitivity index of Xi, also called first order index or main effect: 

 

Si =
V[E(Y|Xi)]

V(Y)
 

Si is by definition a number between 0 and 1. A high value of Si denotes an important input in the sense 

that the uncertainty of the input Xi has an important effect on the uncertainty in the model output Y. 

 

In addition to this, Homma and Saltelli (1996) proposed the total effect sensitivity index of a model input 

as the sum of all the terms of any order involving that input. Being the sum of all possible sensitivity terms 

equal to 1, the difference between 1  and the normalized value of V[E(Y|X~𝑖)] - which expresses all terms 

of any order that do not include input  Xi (i indicates all terms but i) - represents the total effect of input 

Xi : 

Ti = 1 −
V[E(Y|X~𝑖)]

V(Y)
 

For both first-order and total effect indicators we use in this paper the indicators as proposed in Saltelli et 

al., (2010). 

 

THE CASE STUDY SET-UP 

In this work, SHERPA implementation is based on data produced by the CHIMERE CTM model (Menut 

et al., 2013). In particular, the CTM has been used over the whole European territory with a spatial 

resolution of roughly 7 x 7 km2. The anthropogenic emissions proxies underlying the model simulations 

are based on the MACC-TNO emission inventory with residential sector emissions modified to account for 

the enhanced wood consumption at extremely low temperatures (Terrenoire et al., 2015). The 

meteorological input data is based on IFS (Integrated Forecasting System from ECMWF) for the year 2009. 

A set of CTM simulations in which emissions are reduced over the entire modelling domain are used to 

derive the α and ω coefficients required in the simplified SHERPA equation for each grid cell and precursor. 

An additional set of simulations, with reductions over specific areas, provide data for the method’s 

validation. More details on the whole procedure can be found in Thunis et al., 2016 and Pisoni et al., 2017. 

In this paper, we refer to the model linking emission reduction scenarios (of nitrogen oxides-NOX, 

ammonia-NH3, primary PM-PPM, sulphur dioxide-SO2) to yearly average concentrations of PM25. 

 

As previously said, a sensitivity analysis is performed on the SHERPA model. Because SHERPA is based 

on spatially dependent coefficients and due to the fact that we cannot analyze every grid cell, we restricted 

our uncertainty and sensitivity analysis to 5 specific cities: Milan, Utrecht, London, Helsinki, and Konstanz 

(even if here, due to lack of space, we show results only for London).  
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SENSITIVITY ANALYSIS RESULTS 

To take into account all the quantifiable uncertainties, the analyst in collaboration with the modeler must 

specify a nominal or central value, and a range derived from a probability distribution, to each input and 

possibly each coefficient used by the model. In this particular case, it is necessary to identify all the terms 

affecting the modelled air quality at the city level (as said, in this specific case, PM25 yearly averages), i.e.: 

- The model coefficients uncertainty: there are 4 values for α and 4 values of , defining the model 

linking emissions to concentrations (for this we use normal distributions, as estimated during the 

model training phase);  

- The emissions (input) uncertainty, of NOX, NH3, PPM, SO2 (we will use uniform distribution, 

derived from literature); 

- The selected policy, or level of ambition to improve air quality (in terms of emission reductions): 

in this paper we refer to four policies considered in the Air Quality Package Review (Amann et 

al., 2014).  

The first analysis is made considering all together the 13 available perturbations, namely the four , the 

four , the four emissions (NOX, NH3, PPM and SO2) and the policy option. The input “policy option” 

embeds the possible alternative policy options that are proposed in the analysis, each one with the same 

probability as the others. In all the cities, the policy options (as explained above) are related to different 

levels of air quality improvement. The results for London (the only case presented here,   

) show that the input “policy option” is the most important factor. This means that the choice of the policy 

strongly influences the concentration reductions, whereas all other model-related inputs ( and ) do not 

contribute to such reductions. In this case, the first action is on the policy makers who should discuss upon 

what is the best policy to put in place.  

 

Let us assume that a given policy has been selected (i.e. the one at 50% air quality improvement). Now, a 

new sensitivity analysis has been carried out in order to see which input, among the remaining 12, are those 

that are mostly contributing to the uncertainty in the concentrations reduction. In the example of London 

(Errore. L'origine riferimento non è stata trovata.), we find that emission NOX and emission NH3 are 

the most important inputs. This means that, if we want to improve the accuracy of the concentrations 

reductions, and therefore the evidence for the policy, we should make efforts towards reducing the 

uncertainty on the emissions of NOX and NH3. One can note that, in this case, the inputs related to  and 

 have negligible influence on the concentrations reductions. This means that the modeler and the analyst 

do not need to spend time and efforts in further reducing the uncertainty of such inputs. 

 

 
Figure 1. Results considering model coefficients, input data and policy options 

 

         



 
Figure 2: Results considering model coefficients and input data. 

 

CONCLUSIONS 

In Europe, we are moving to a situation in which exceedances of air quality legislation thresholds are mainly 

measured in specific regions or cities. This is way the focus of this paper has been on the application of 

sensitivity analysis to a modelling tool specifically designed for these geographical (regions/cities) scale.  

SA results show that the most influential inputs are by far the emissions, in particular of PPM, NOX, and 

NH3. The model coefficients ( and ) are a less influential input, even if the  coefficients are more 

important than the  ones. Finally, the policy selection (in this case, the level of ambition to be considered 

in the design of the air quality plan) remains a key aspect.  
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