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Abstract: The hybrid Lagrangian stochastic algorithm for buoyant plume rise from an isolated source described by
Bisignano and Devenish (2015) is introduced into the Lagrangian dispersion model SPRAYWEB (Tinarelli et al,
1994,  Alessandrini  et  al.  2013, Bisignano et  al.,  2017).  In  our  approach each  particle  carries  its  own potential
temperature, which evolves according to a stochastic differential equation as in Van Dop (1992). The buoyancy is
calculated from the particle temperature and is directly included in the equation for the evolution of the velocity
through a coupling term. We compare the concentration field simulated by the model with the results of a water tank
experiment (Weil et al. 2002) 
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INTRODUCTION
Models of buoyant plumes originated with the work of Morton et al. (1956). These models describe the
mean flow of the plume but do not explicitly take account of fluctuations in the velocity and buoyancy
that occur within the plume (except through entrainment). 
Several authors have attempted to model buoyant plume rise using a Lagrangian approach (e.g. Anfossi et
al. 1993; Alessandrini et al. 2013). Here we consider a hybrid model introduced by Webster and Thomson
(2002)  in  which  the  mean  flow  is  calculated  from  a  simple  plume  model  and  the  fluctuations  are
calculated using an Lagrangian stochastic model (LSM). Webster and Thomson (2002) only considered
fluctuations in the velocity and not the temperature; here we treat both fluctuations of the velocity and
temperature. The governing equations for potential temperature and vertical velocity are derived from the
Briggs (1984) plume equations. Then we separate the average and the turbulent fluctuating parts of the
two  variables  through  the  application  of  the  Reynolds  decomposition.  The  final  expressions  of  the
stochastic differential equations (SDEs) for turbulent vertical velocity and potential temperature of the
plume are obtained by adding terms of the form of Thomson (1987) to the turbulent fluctuating parts in
order to satisfies the well-mixed condition.  Accounting for fluctuations in temperature means that the
Lagrangian particles  carry its own potential temperature, which evolves according to a SDE as in Van
Dop (1992). The effect of temperature fluctuations is directly included in the equation for the evolution of
the velocity  through a coupling term.  To our knowledge,  an expression for  the temporal  Lagrangian
structure  function  for  a  passive scalar  is  not  prescribed  in  literature.  Hence,  a  completely  satisfying
approach for setting turbulence parameters for the temperature SDE based on Lagrangian description is
not yet available. The constants required in the temperature SDE are set following the values commonly
found in literature from both measurements and large eddy simulations (Devenish et al., 2010). 
The above-described temperature SDE (Bisignano and Devenish, 2015) is introduced for the first time
into the LSM SPRAYWEB (Tinarelli et al, 1994, Alessandrini et al. 2013, Bisignano et al., 2017) that, in
its standard form, decribe the plume rise by use of the Anfossi et al. (1993) algorithm.
We validate the model against the water tank experiment of Weil et al. (2002).



THE PLUME RISE MODEL
The equations governing the rise of a buoyant plume in a uniform crossflow  U  are given by Briggs
(1984):
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where  v=(U2+w2)1/2 is the velocity component along the plume axis,  s is the distance along the plume
axis,  E is the entrainment rate (to be defined),  w is the vertical velocity of the plume,  b is the plume
radius, N is the ambient buoyancy frequency and g’= g(θ(z)-θa(z))/θ0 is the reduced gravity in which θ(z)
is the potential temperature of the plume at height z, θa(z) is the ambient potential temperature at height z
and  θ0 is a reference temperature. The parameter  kv is the added-mass coefficient that accounts for the
momentum of the ambient fluid displaced by the plume as the plume rises (here we considered a value of
kv=1.3  as suggested by Briggs, 1984). Equations (1) respectively describe the evolution of the volume
flux V , momentum flux (per unit density) M and the buoyancy flux F. They are collectively known as the
plume equations . First, we expand the left-hand side and express the plume equations in in term of  w, b,
and  θ.  Then we re-write the derivatives of  w, b, and  θ with respect to  s as derivative with respect to
t=∫ds/v. Making use of  N2=g/θ0 dθa/dz =g/(θ0w) dθa/dt e get:
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The equations (2) reduce to those of a vertically rising plume as v → w and to a bent-over plume as w →
0. These equations are now used to calculate the mean velocity and temperature (which will be denoted
by an overbar). The fluctuating velocity and temperature are denoted by a prime and will be calculated
from SDEs. These are constructed from analogous equations to (2) and coupled with LSMs for w′ and θ′.
Let us show the application of a Reynolds decomposition to the equations for w and θ. Because equations
(2) are linear in  w and  θ there are no second-order  quantities and there is  no feedback on the mean
quantities by the fluctuating quantities. Let us assume, first, that b′=0 and hence that is evaluated in terms
of the mean quantities  alone and,  second,  that  E=E(w;v;U).  Since we assume also that  there  are  no
fluctuations in θa , the Reynolds decompositions for w and θ are:
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Then the SDEs for  w′ and  θ′  are completed by adding respectively the LSM of Thomson (1987) for
inhomogeneous turbulence and a LSM (in which for simplicity we assume that the temperature statistics
are homogeneous) similar to that considered by van Dop (1992):
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where TL  and Tθ are the time scales on which w’ and  θ’ decorrelates respectively, ε and  εθ  are the mean
kinetic energy and scalar dissipation rates respectively, C0 is the constant of proportionality in the second-
order Lagrangian velocity structure function (we choose CO=5), Cθ=1.6 is the Obukhov-Corrsin constant
and σw is the vertical-velocity standard deviation. The third term of RHS of equation (5) for θ’ arises from
the time derivative of mean temperature that implicitly contains fluctuations of velocity. This term and the
first term of RHS together ensure that θ is conserved following a particle, in both equations (4) the term
involving  E and  the  fluctuating  quantities  represent  the  effect  of  the  entrainemnt  on the  turbulence,
whereas the terms involving the time scales represent the internal turbulence of the plume. We neglect the
covariance  σwθ  that may exist in reality.
The definition of entrainment, as in Bisignano and Devensih (2015), includes two additive entrainment
mechanisms in a crosswind, one due to velocity differences parallel to the plume axis and the other due to
velocity differences normal to the plume axis :
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We haveassumed that the difference between the horizontal component of the plume velocity and  U is
small  relative  to  U.  The  constant  coefficients  α and  β are  associated  with  the  two  entrainment
mechanisms: α with velocity differences parallel to the plume axis and β with velocity differences normal
to the plume axis. We take α=0.1 and β = 0.5 which are consistent with previous studies (Devenish et al.,
2010). m>1 is a tunable parameter. Devenish et al. (2010) found that m=3/2 gave the best agreement with
LES of buoyant plumes in a crosswind and field observations. We use this value throughout this study.
The turbulence parameters  σw,  σθ,  TL   and  Tθ   have been choosen to be related to the approriate mean
quantities  in  the  problem.  Also  it  is  necessary  to  limit  the  turbulence  parameters  in  order  to  avoid
numerical overflow in the oscillating region. We set:
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 where α and γ are tunable constants whose values are chosen equal to 0.1, and F0 the initial buoyancy
flux. The initialisation of w, b and g′ (denoted with a subscript 0) for a pure plume whose initial buoyancy
flux is known is not straightforward. We estimate w0 by equating the initial radius b0 =2z so that w0=(b0 g
′0)1/2. Since the initial buoyancy flux F0=πb2

0 g′0 v0 we obtain a cubic polynomial for either w0 or g′0 for
given b0, whose roots can be inferred by analysing the discriminant ∆. Any of the three cases (∆>0, ∆=0,
∆<0) will produce a physical solution. In the case that there are three real roots (∆ > 0), shows that two of
these  roots  will  be negative,  and can  thus be  discarded  (Bisignano and  Devenish  (2015) for  further
details).

THE CASE STUDY.
We considered the Weil et al. (2002) experiment, which investigate the plume dispersion in the convective
boundary  layer  (CBL) using a convection tank.  The focus is  on highly-buoyant  plumes that  become
trapped  in  the  CBL capping  inversion  and  resist  downward  mixing.  Such  plumes  are  defined  by  a
dimensionless buoyancy flux F*>0.1. F*  is defined as:
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where Fb is the stack buoyancy flux, U is the mean wind speed, w∗ is the convective velocity scale, and zi

is the CBL depth. In partuclar the experiment is characterized by different values  of the normalized stack
buoyancy flux and it reproduces  all components of the lateral and vertical dispersion  parameters (rms
meander,  relative  dispersion,  total  dispersion),  mean  and  root-mean-square  concentration  fields  as  a
function of F∗ for continuous buoyant releases. 

RESULTS
We focus  on  mean  height,  horizontal  and  vertical  plume  standard  deviations,  for  the  cases F∗=0.1,
F∗=0.2, and F∗=0.4. We compare the measured and the simulated results, both with Anfossi et al. (1993)
plume rise and Bisignano and Devenish (2015) plume rise.  The Figures 1–3 (that  refers  to the cases
F∗=0.1, F∗=0.2, and F∗=0.4 respectively) show that the model plume characteristics agree very well with
the data plume characteristics for a wide range of  normalized buoyancy flux values. This preliminary
results  show  that the  model  is  able  to  correctly  reproduce  the  basic  behaviour  of  the  plume  rise
phenomenon  in  convective  conditions,  though  with  a  little  overestimation  for  the  vertical  standard
deviation and a little underestimation in the mean height. We found that the vertical  spread, evaluated
with the above-described plume rise, matches the data better than that evaluated with the Anfossi et al.
(1993) plume rise, characterised by the absence of temperature fluctuations. 

Figure 1. Comparison of the measured (Weil et al. 2002) and simulated (both with Anfossi et al. (1993) and
Bisignano and Devenish (2015) plume rises) mean height, horizontal and vertical standard deviations for  F∗=0.1.

Figure 2.  As in Figure 1 but for  F∗=0.2

http://context.reverso.net/traduzione/inglese-italiano/characterised+by


Figure 3. As in Figure 1 but for  F∗=0.4
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