
PM2.5 predictions for

urban monitoring sites in 

Budapest using statistical fusion of 

CAMS air quality models

Adrienn Varga-Balogh, Ádám Leelőssy and Róbert Mészáros

Eötvös Loránd University
Institute of Geography and Earth Sciences
Department of Meteorology
Budapest, Hungary

vargabaloghadrienn@gmail.com



Study area and data

 Budapest



Study area and data

 Budapest

 Hungarian Air Quality Network 

Varga-Balogh et al., Atmosphere 2020, 11(6), 669



Study area and data

 Budapest

 Hungarian Air Quality Network

 6 stations

Varga-Balogh et al., Atmosphere 2020, 11(6), 669



Study area and data

 Budapest

 Hungarian Air Quality Network 

 6 stations

 Copernicus Atmosphere Monitoring Service (CAMS) numerical air quality

models



ENSEMBLECHIMERE

EMEP

EURAD-IM

LOTOS-
EUROS

MATCH
MOCAGE

SILAM

DEHM

GEM-AQ



Study area and data

 Budapest

 Hungarian Air Quality Network 

 6 stations

 Copernicus Atmosphere Monitoring Service (CAMS) numerical air quality

models

 Winters of 2018–19, 2019–20, 2020–21, 2021–22



Fusion method

 5 of 6 measurement sites were taken into consideration for cross-validation

 Model forecasts were fitted to the measurements

 Optimal combination of models (simplified from Sofiev et al. 2017)

Sofiev et al. 2017: Multi-model ensemble simulations of olive pollen distribution in Europe in 2014
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 constant member and weights are fitted on a 10-day training period

 Model-weigths were evaluated on the residual measuring site 
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Conclusion

 The CAMS ENSEMBLE was better than individual models in terms of 

bias, RMSE and Pearson correlation (r). 

 Bias-corrected models mostly performed better than the 
uncorrected models, especially ENSEMBLE forecast improved for all 

winters with bias-correction. 

 Fusion model performs nearly as ENSEMBLE forecast, however in 

winter stagnation events, it performs better than CAMS and CAMS 

ENSEMBLE models. 

 Model weights were found to be strongly weather-dependent and 

variable among winters with many and no stagnation events. 
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