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Abstract: 

A crucial part of risk assessment following airborne spread of toxic chemicals is the translation from concentration 

field to injury probabilities. The impact of population movement remains an understudied and poorly understood factor 

in such an enterprise. A basic level initiative to target this knowledge gap, with emphasis on a mathematical method to 

calculate exposure probability distributions, is presented here. Finally, qualitative results from an investigation are 

presented, which reveal phenomena that are present but hidden in consequence analyses when population movement is 

ignored. 
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INTRODUCTION 

The most common method for estimating health risks following an airborne release of toxic chemicals is to 

apply tabulated values from exposure guidelines, such as AEGL or TEEL amongst many others. These 

tables present concentration limits for a certain set of chosen exposure times and are compiled by experts 

using primarily data from animal testing. Even though the tables are very useful, they are burdened by 

important simplifications that need to be addressed for improved health risk estimations. One evident 

limitation is that the guidelines are restricted to constant concentration levels, which exclusively is the case 

in controlled laboratory experiments. For any real life exposure, concentration varies significantly and it is 

therefore advisable to enhance the exposure modeling to include temporal variance. Improvement may be 

found by using the well-known probit model, which allows for time variance by its more general 

construction. Temporal variability of the exposure depends on the dynamics of both the plume itself and 

the motion of the population. Much effort is today focused on atmospheric dispersion modeling which 

improves our understanding of the plume dynamics, while modeling of the movement of the population has 

largely been overlooked and its impact remains to a high degree unresolved. 

 

The intuitive Haber’s rule, ks,e=cT, to describe which exposure time, T, and concentrations, c, that are 

required to obtain a certain medical end point e for the substance s, has frequently been used in toxicological 

studies and risk estimations, as discussed by Miller et al. (Miller et al., 2000). Already in the 1930s, Bliss 

found that Haber’s rule did not fit his experimental data with insecticides, and proposed a toxic load 

approach (Bliss, 1940). Toxic load, TL, is a generalization of Haber’s rule by introducing the exponent n 

over the concentration, which leads to the toxic load expression TL=cnT. Over the years, many more studies 

have contradicted Haber’s rule and indicated that toxic load provides better agreement to experimental data 

(Atherley, 1985; Bunce & Remillard, 2003; Gardner et al., 1979; Miller et al., 2000; Ten Berge et al., 1986). 

Indeed, Haber’s rule is only one specific case of the toxic load formulation with n=1. Probit analysis, i.e. 

regression using binomial response variables, was suggested by Bliss in 1934 (Bliss, 1934) and has become 

a popular method. Finney continued on Bliss analysis and established the probit analyses rigorously (Finney 

& Tattersfield, 1952). Toxicological parameters are typically calculated from controlled conditions where 

concentrations are held constant. This method allows for characterization of parameters of different 

substances, which can successfully be applied in risk area estimations. However, in a real-life situation, 

concentration varies and the expression cnT is only applicable for time independent concentrations. Czech 

et al. discusses different methods to calculate toxic load from time variant concentration field (Czech et al., 

2011). The integrated concentration toxic load model 
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is clearly the most consistent method given access to the time-dependent concentration. Equipped with 

models able to handle nonlinear toxicology and time variant concentration field, we now approach the 

difficult subject of population dynamics. This is an often-overlooked or ignored aspect in consequence 

analysis. Indeed, the population is often treated as static (Namboothiri & Soman, 2018; Pontiggia et al., 

2010). In contrast, a dynamic population is applied in some hypothetical case studies that thereby catch the 

combination of concentration plume and a moving population (Georgiadou et al., 2007; Lovreglio et al., 

2016; Mocellin & Vianello, 2022; Wang et al., 2020).  

 

To our knowledge, no thorough study has been conducted on the topic of population dynamics coupled to 

inhalation toxicology. Our ambition is to improve consequence analyses by unraveling the main properties 

of the interaction between a toxic plume and population dynamics. The initial approach is to identify and 

investigate the most fundamental and relevant features derived from population dynamics within the 

framework of probit analysis. To do so, we apply an integrated toxic load model on a population that are 

allowed to move within a domain containing a concentration field. A static population is considered a 

special case where the movement speed is reduced to zero. The population is assumed to be unaware of the 

exposure and do therefore not react in any way to the concentration field. The population dynamics is 

modeled as a Wiener process using the Itô diffusion framework on a 2D domain without obstacles. This is 

not a realistic movement of a population but it provides distinct mathematical properties that allow for a 

wider generalization than a specific case setup would. Even under this simplification, it is reasonable to 

expect that interesting features can be identified. Provided by knowledge from such a study, realism may 

later be improved to approach a real-life situation. 

 

In this paper, the emphasis is particularly placed on the methodology to calculate the exposure distributions. 

Itô diffusion show great compatibility with the Feynman-Kac formula that enables, in a beautiful way, the 

problem to be cast in the form of partial differential equations (PDE). This transformation allows us to 

bypass time-consuming Monte Carlo simulations and directly acquire the probability distribution of the 

exposure with high accuracy and precision by solving the deterministic PDE. 

 

THEORY 

Individuals of the population are modelled to follow random paths ( )X t  modelled by Itô diffusions, 

moving in a given concentration field ( , )c t x . As a consequence of the concentration field and the random 

path, an individual will be exposed to a random logarithmic toxic load, which is referred to as the exposure, 
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during the time interval [0, ]T . A quantal toxicological response (e.g., light injury, or death) is supposed to 

occur in an individual if     exceeds an individual random tolerance   (Ashford & Sowden, 1970) 

which is supposed to be a standard normal random variable. Here   and   are real numbers, the probit 

parameters for the quantal response in question. At the population level, the probability for the quantal 

response, referred to as population injury, is 
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where 1S F    denotes the survival function of   and F  is the cumulative distribution function 

(CDF). The population CDF is obtained by the law of total probability 

 (0)( ) ( ) ( )XF F x p x dx    ∣ ∣   (4) 

where (0) ( ) ( (0) )XF x P X x     ∣ ∣ ∣  is a conditional CDF and ( )p x  is the population probability 

density at 0t  . The conditional CDF can be obtained from the conditional moment generating function 

(MGF) of ( )expd   , defined by 

 (0) ( ) [ ( ) (0) ], 0X t x E exp t X x tM d  d∣ ∣ ∣   (5) 

by deconvolution according to Rossberg (Rossberg, 2008) 
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Here the convolution kernel is given by 

 ( ) exp( exp( ))K y y y      (7) 

By the Feynman-Kac formula (Milstein & Tretyakov, 2004)  

 (0) ( ) (0, )XM x u x d∣ ∣   (8) 

where 0   and ( , )u s x  is solution to the terminal value problem 
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is the generator of the Itô diffusion 
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defining the random trajectories of the population. In the method above, 2 can be replaced by a bounded 

domain  , provided that T  is replaced by T  , where   is the first exit time of the Itô diffusion, the 

boundary condition  

 ( , ) 1, 0 ,u s x s T x       (12) 

is added in (9), and absorbing boundary conditions are applied in (11), i.e., the right hand side of  (11) is 

multiplied by { }1 t  . 

 

NUMERICAL SOLUTION 

To numerically solve the deconvolution equation, eq. (6), to obtain the conditional CDF needed to compute 

the quantal response, it is reformulated as a minimization problem subject to some extra constraints. It has 

proven beneficial set up the problem using the PDF instead of the CDF, which is defined by the linear 

transform 
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The proposed minimization problem reads: 
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where the first term is convolution equation and the second term is a penalty which stabilizes the problem 

by adding additional smoothness, given some penalty parameter  . The constraints on the PDF directly 

translates to correct constraints on the CDF, i.e., monotonicity and boundedness in [0,1] . With a slight 

abuse of notation the discrete version of equation (14) reads: 
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where f  is a pointwise approximation of the PDE, 1 1, ( )( ) / 2k j k kj kK y z z z   K

| (0) ( exp( ) | )d iXj y xM  M , and L  is a lower triangular matrix defined by equation (13). For each vector 

entrée 

 | 0 ( )( ) ( exp( ) | ) (0, )
idj xp yX i ey x uM x    M   (16) 

a finite element solver is used to approximate the solution of the terminal value partial differential equation 

given by the Feynman-Kac formula. The solution to the minimization problem (15) can be obtained using 

a sequential least squares programming solver. 



 

RESULTS AND DISCUSSION 

A comprising quantitative study of the impact of motion is not within the scope of this work. However, an 

investigation using the prerequisites shown in Figure 1 provides interesting qualitative results. The domain 

is circular and restricted by a border that terminates all paths that extends beyond it. A symmetric two-

dimensional Gaussian concentration field is located at the centre of the domain, causing exposure of the 

uniformly distributed population. The probability distribution for the exposure of an individual depends on 

its starting position, with highest exposures in the middle of the domain and lowest exposures close to the 

domain border. The aggregated population injury, Qr, as a whole is the main quantity of interest. Now, 

since both the domain and the concentration field are rotational symmetric with regards to the centre of the 

domain, the exposures for different positions depend only on the radial distance from origin. 

 
Figure 1. A circular domain with a centrally located Gaussian concentration field illustrated with a heat map. Four 

example paths are drawn together with their different starting positions, marked with circles. Paths are interrupted if 

they hit the border of the domain, as is the case for two of the paths in this example. 

 

A probability distribution function can be found following the method described above. First, it is worth 

noticing that the calculated probability for injury may be considerable different using only the expectation 

value of  in comparison to using the complete distribution thereof. For low exposures, the injury risk is 

underestimated when using the expectation value, while the opposite is true for high exposures. This 

finding is related to the so-called impact region shown in the left panel of Figure 2. The position and 

width of the impact region are determined by the substance-dependent probit values  and . Probability 

mass to the left of this region will give rise to negligible injury risk, while on the right side it will almost 

certainly cause injury. This is a strongly nonlinear relation which means that the distribution should be 

used, not only the expectation value. 

 

As long as there are people left in the domain, the probability mass flows towards higher -values as time 

proceeds. The population injury, Qr, increases as it enters the impact region with a maximum rate in the 

middle of the region. 

 

Figure 2. Left panel, the aggregated probability density distribution of  for the entire population at the end time of 

the interval displayed in the right panel. Right panel, the injury outcome given the distribution of  for different 

diffusion coefficients D. Note that “Static” actually corresponds to an almost static population; a very slow movement 

is actually used to obtain a non-discrete distribution. However, this slow movement does not interfere with the 

interpretation of the results. 



As the right panel shows, slow movements (i.e., low diffusion coefficient D) give rise to the earliest 

population injuries. The reason is that the persons initially exposed to high concentration remain there for 

a long time and therefore enters the impact region first. As time progresses things change, faster 

movements cause far more people to visit the region with high concentration and even though the 

probability for each person remains low, Qr increases relatively fast. 

 

It was found that the movement speed that maximize Qr changes with time, illustrated in the right panel 

of Figure 2. This phenomenon might be non-intuitive at first, and it underlines the complexity of this 

field. Its direct implication is that there is no constant factor available to translate the population injury 

between different movement speeds. Instead, this finding motivates further and more thorough studies on 

the subject. 
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