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Abstract: We present a detailed study of the influence of the atmospheric boundary-layer variability on large-eddy 
simulation (LES) model predictions in the context of microscale pollutant dispersion in urban-like environments. For 
this purpose, we have developed a new approach to model inflow boundary conditions and their related uncertainties 
that are essential to represent how the large atmospheric scales influence the microscale flow features in a complex 
urban geometry. In a preliminary step, we have considered uncertainties in the inflow mean wind direction and in the 
friction velocity of the mean wind velocity logarithmic profile. We have then built a perturbed-physics ensemble of 
tracer concentration fields by integration of the LES model in a multi-query framework. In this study, the ensemble of 
LES fields is obtained for the Mock Urban Setting Test (MUST) field-scale experiment and it is used to carry out a 
global sensitivity analysis, i.e. to quantify the LES model spatial dependencies to the mean wind direction and the 
friction velocity.  
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INTRODUCTION 
Large-eddy simulations (LES) are a promising approach to simulate microscale meteorology and pollutant 
dispersion in complex urban environments, since they can accurately capture highly unsteady and complex 
flow topologies typically found in the wake of buildings, and thereby track the spatiotemporal variability 
of pollutant concentration in urban canopies. This is of primary importance to capture the peak pollutant 
concentrations for instance (Philips et al. 2013). However, to correctly predict microscale pollutant 
dispersion in complex geometry, LES models have to account for the variability of the atmospheric 
boundary-layer and in particular for the complex interactions with the turbulence mesoscales (Nagel et al. 
2022). For this purpose, boundary conditions models can be used, but their parameters are highly uncertain 
and it is therefore advised to adopt a probabilistic representation of the boundary conditions to reflect their 
uncertainties (Dauxois et al. 2021). In this context, we aim at applying data assimilation methods to LES 
dispersion models, i.e. at solving an inverse problem that combines LES model predictions with in situ 
measurements to infer more accurate inflow boundary conditions (Defforge et al. 2021). It is therefore of 
primary importance to identify where to place sensors to extract the most informative data and thus have a 
well-posed data assimilation problem (Peng et al 2014). To design the observation network, a preliminary 
step consists in carrying out a sensitivity analysis to spot which areas are subject to high uncertainties in 
the LES predictions, and thereby determine in which areas potential sensors could be used to reconstruct 
information on the uncertain inflow boundary condition. In this study, this approach has been applied to 
one near-neutral trial of the Mock Urban Setting Test (MUST) experiment, which is a good validation case 
for the LES simulations (Yee and Biltoft, 2004) and which is used here to provide a proof of concept of the 
proposed sensitivity analysis approach. 
 
THE MUST (MOCK URBAN SETTING TEST) CASE 
 
The experiment 
MUST is a field-scale experiment performed in September 2001 in Utah, USA, to provide extensive 
measurements of pollutant dispersion within an urban-like canopy for model development and validation 



purpose (Yee and Biltoft, 2004). The simplified urban canopy is represented by an array of 120 regularly-
spaced shipping containers disposed over a flat and homogeneous terrain. Each container measures 12.2 m 
long, 2.42 m wide and 2.54 m high. A series of trials was performed for which a non-reactive gas, propylene, 
was released under different atmospheric conditions during 15 minutes. For this study, we simulate the trial 
2681829 corresponding to near-neutral atmospheric conditions since it has been extensively studied in the 
literature (it is of particular interest to study the container impact on the incident flow within the container 
array) and is therefore a relevant validation test case for our modeling approach. 
 
The large-eddy simulation solver and related modeling choices 
To reproduce the MUST case, we design and run obstacle-resolved LES to predict the temporal evolution 
of the flow and the propylene transport across the container array. For this purpose, we use the AVBP solver 
developed by CERFACS (https://www.cerfacs.fr/avbp7x) which solves the filtered compressible Navier-
Stokes equations on unstructured meshes using a finite volume discretization and the second-order in time 
and space Lax-Wendroff scheme. Since the Mach number of atmospheric boundary-layer flows is very low, 
an artificial compressibility approach, also known as pressure gradient scaling, is used to artificially 
increase the time-step and thereby reduce the computational time. 
The computational domain is a square box of size 𝐿 × 𝑙 × ℎ = 420	m × 420	m × 50	m (Fig. 1). It is 
discretized based on an unstructured tetrahedral mesh of 14,7 × 10! cells, with refinement in area of 
interest and towards walls, down to 30 cm resolution at the obstacles level. To efficiently handle changes 
in the mean inflow direction, the computational domain is separated in two subdomains (Fig. 1): the 
peripheric domain D2 that is turned to align with the mean inflow direction, and the inner domain D1 that 
is fixed. We solve the Navier-Stokes equations on all subdomains using the coupling library CWIPI. This 
is useful to avoid generating a new mesh for each new set of input parameters and facilitate the generation 
of a large ensemble of LES runs.  

 
Figure 1. Schematic of the simulation subdomains D1 and D2 for the simulated MUST trial using LES: the fixed 
inner domain is in blue, the rotating peripheric domain D2 is in red, and the overlap area between D1 and D2 is 
hatched. Lateral boundary conditions are indicated. The orange star represents the emission source location. The 
cross symbols represent the towers at which observations were acquired during the trial: the upstream tower S is 

indicated in green, while the inner tower T is indicated in blue. 



A mean wind log-law vertical profile (Eq. 1) is imposed at the inlet based on the Monin-Obukhov similarity 
theory in neutral atmospheric conditions: 
     𝑈(𝑧)444444 = "∗
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This profile was fitted with the experimental data obtained at Tower S (Fig. 1), which is located upstream 
of the container array. Wind fluctuations are added to the mean inlet wind profile using the Kraichnan 
synthetic injection method following the Passot-Pouquet turbulence spectrum (Daviller et al. 2019). In this 
study, we impose a prescribed mean vertical profile of the Reynolds tensor obtained from a free-field 
precursor simulation of the atmospheric boundary-layer. This novel approach provides a way to have 
inhomogeneous anisotropic inflow boundary conditions and only requires to know the friction velocity 𝑢∗, 
the ground rugosity 𝑧' and the mean wind direction 𝜃()*+,4444444 to parametrize inflow turbulence. In complement 
to the inlet, wall laws with adapted roughness are used for the ground and the buildings, outflow boundary 
conditions are used for the outlet and top boundaries, while symmetry is imposed on the domain sides 
(Fig. 1). Propylene is released as a passive gas tracer from a continuous and constant point source emission.  
 
GLOBAL SENSITIVITY ANALYSIS FRAMEWORK 
The key idea of global sensitivity analysis in this context is to quantify how uncertainties in each input 
parameter influence the variance of a given quantity of interest in the LES model. This is useful to spot the 
most influential parameters on the LES model response across the computational domain. A preliminary 
One-At-a-Time (OAT) sensitivity analysis showed that perturbations of the ground roughness length 𝑧' 
and of the inflow turbulent kinetic energy parameter do not significantly impact the simulated mean fields 
of interest comparatively with the atmospheric boundary-layer intrinsic variability. We also assume that 
the emission source parameters, position and intensity, are known. The sensitivity analysis is therefore 
restricted to the two inflow parameters that have the strongest impact on the LES predictions: the friction 
velocity 𝑢∗ that drives the mean inflow profile (Eq. 1), and the mean inlet wind direction 𝜃()*+,4444444. 
 
Parameter space sampling 
The range of variation of the two uncertain parameters is defined from a climatology obtained in the vicinity 
of the MUST area. Wind statistics were computed based on 12 days of meteorological measurements from 
the station SAMS #08 located 1600 m southeast of the obstacles (Yee and Biltoft, 2004). According to 
these statistics, most of the wind velocity magnitude measurements at 10-m AGL are between 0	and 
12	m	s-.. To avoid complications with very low wind speed, we limit the range to [1; 12 m.s-1]. We can 
also note that no wind direction prevails. Since it is a preliminary study and to reduce the computational 
cost associated with the parameter space sampling, we limit the wind angle to a variation of ±30° from the 
North direction. The mean wind angle of −40.95° recorded at the upstream Tower S (Fig. 1) is included in 
this interval [−60°, 0°] expressed in the MUST frame of reference.  
Once the range of variation of the parameters is defined, the next step is to choose for which values of the 
parameters the LES model is run to generate the ensemble. Since the LES model is very computationally 
expensive, it is not possible to have a very large sample (our budget is limited to 100 runs) but still we need 
to have a good coverage of the uncertain space to capture well the LES model response. We therefore use 
the Halton’s low-discrepancy sequence to homogeneously sample the input parameter space (Fig. 2).  
 

 
Figure 2. Parameter space sampling obtained with the Halton’s low-discrepancy sequence with the inlet wind 

direction in the x-axis and the friction velocity in the y-axis: each point is a pair of parameters for which a LES is run. 



The LES model is then integrated for each sample parameters of the Halton’s sequence. It simulates 
unsteady flow and tracer concentration fields across the domain from which time-averaged statistics can be 
derived. For validation, we compare LES averages over a 200-s time period after a spin-up with 
experimental data acquired over the [300 s; 500 s] time period of the trial 2681829 following 
recommendations by Yee and Biltoft (2004). Note that the spin-up duration is scaled by the friction velocity 
because when the wind speed is slow, the plume takes longer to establish. The Reynolds tensor profile 
prescribed for the turbulence injection is also scaled by 𝑢∗ and rotated to align with 𝜃()*+,4444444. 
 
Sobol’ sensitivity indices 
To study the sensitivities of our LES model to the mean inlet wind direction and friction velocity, we 
estimate the first-order Sobol indices 𝑆/ using the Monte Carlo method from Saltelli (2002). These indices 
give the share of total model variance, for one field 𝑌, explained by each input parameter 𝑋/ (Eq. 2): 
     𝑆/ =
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These indices vary between 0 and 1, 1 meaning that 100% of the LES model variance is due to the 
standalone ith parameter. This analysis is performed for each node of a specific analysis grid defined as a 
1-m resolution horizontal cut of the D1 domain at a height of 1.6 m. To limit the cost of the Saltelli method, 
we use a Radial Basis Function (RBF) to interpolate the LES model predictions between the samples from 
the Halton’s sequence. The RBF model was validated and its hyperparameters (kernel model, number of 
neighbors, etc) were optimized by splitting the Halton’s sequence sample into a training set (80 members) 
and a validation set (20 members), leading to a mean absolute error of 0.189 ppm. Tests showed that a 
Saltelli’s sequence of 2048 samples was enough to have converged estimated Sobol’ indices. 
 
RESULTS 
The effect of the input parameter perturbations on the plume shape is highlighted by comparing the 1 ppm-
isolines of the (time-averaged) mean tracer concentration fields obtained for three ensemble members of 
the Halton’s sequence (Fig. 3); these members are representative of the variety of the LES model response 
in this study. As expected, when the friction velocity increases, the plume is shorter, while the plume 
centerline remains the same. The wind inlet direction has more impact since it deflects the plume centerline 
and can significantly change the flow-obstacle interactions. 
 

 
Figure 3. Comparison of the 1 ppm-isoline at 𝑧 = 1.6 m predicted by the LES simulations corresponding to the 

Halton sample #015 in green, #026 in red, and #042 in blue. The corresponding input parameters are shown in Fig. 2. 
 

The first-order Sobol indices (Eq. 2) are estimated for the horizontal cut at 𝑧 = 1.6 m of the mean tracer 
concentration field. We thereby obtain 2-D maps of Sobol’ indices (Fig. 4), which demonstrate that there 
are spatially organized patterns of concentration dependency to the inflow boundary conditions parameters 
in our LES model. The sides of the ensemble-averaged plume centerline are mainly dependent on the inflow 
wind direction (the yellow-to-orange areas on the left panel of Fig. 4) as these regions are crossed by the 
plume only for some extreme wind direction values. On the contrary, the concentration in the near source 
region appears to be mainly driven by the wind velocity (the yellow-to-orange areas on the right panel of 
Fig. 4). There is also a region where both wind velocity and wind direction have a more equal contribution 
to the tracer concentration (the pink-to-purple areas in Fig. 4); this is related to the plume size associated 



with the ensemble mean. These sensitivity maps are clearly useful from an experimental design perspective, 
as they tell us where the sensors would be able to catch perturbations information on the wind boundary 
conditions in a data assimilation framework.  
 

 
Figure 4. First-order Sobol indices of the mean concentration field at 𝑧 = 1.6 m with respect to the mean inlet wind 

direction (left) and to the prescribed friction velocity (right).  
 

CONCLUSION 
To investigate the LES model sensitivities to the wind boundary conditions in the context of microscale 
dispersion, we designed and built a perturbed-physics ensemble of LES for a near-neutral trial of the MUST 
field campaign. From a modeling viewpoint, a particular focus has been on the development of inflow 
boundary conditions representative of atmospheric boundary-layer turbulence using a synthetic injection 
method combined with free-field precursor simulation to impose anisotropic vertical wind profiles at the 
boundary conditions. From a stochastic viewpoint, the LES model response (i.e. the relationship between 
the 2-D mean tracer concentration field at the human level and the wind direction and friction velocity) was 
studied using Sobol’ indices. This allows to identify which regions of the microscale domain are the most 
sensitive to the wind direction and/or to the friction velocity. Future work includes replacing the RBF simple 
interpolation by a more robust metamodel based on machine learning to increase representativeness of the 
sensitivity analysis. This will pave the way towards designing a data assimilation framework to estimate 
the uncertain inflow parameters by aggregating surrogate model predictions with in-situ measurements. To 
go further, we will investigate how we can use the spatial distribution of the LES model sensitivities to 
provide guidelines to optimize the sensors’ locations so as to improve data assimilation performance. 
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