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Abstract: Detecting weak signals in a noisy environment is a very important matter in many application cases relating 
to atmospheric dispersion or radiation exposure. Let us mention the detection of abnormal chemical concentrations in 
the air (due for instance to a leakage in a pipe network) or the detection of abnormal levels of radioactivity or 
concentrations of radionuclides in the air. When the environment is noisy, it is very difficult to monitor a variation in 
the measurement of a quantity (concentration, radiation…) corresponding to a threat before the potential hazard 
materialises. However, by accumulating the data over time and space using several sensors, it is possible to say if what 
is measured is likely to be noise or not. Being able to detect small variations early may be a way to react before the 
hazard occurs. Here we propose a new method especially designed to detect weak events characterised by surreptitious 
releases into the air transported and dispersed by the wind over a field equipped with sensors. We use the CUSUM 
(Cumulative Sum) as a base for our method and we extend it to multivariate cases and asynchronous monitoring. The 
extension to multivariate cases is not straightforward. Indeed, if some sensors only measure noise, they will decrease 
the overall signal to noise ratio and thus lower the probability of detection. We propose a way to prevent this by selecting 
the sensors that are most likely monitoring the signal. The non-synchronicity of the monitoring between the sensors 
using online statistical detection methods has never been addressed before our own work. The main assumption in the 
literature is that when a sensor starts monitoring an event, it will continue until detection. However, for releases 
spreading in the field, it is very possible that a sensor stops monitoring before some others do. Our method tackles the 
non-synchronicity issue while keeping the required computational power low enough for online detection. This method 
has been validated using academic data. Now, it will be tested in a realistic twin experiment consisting in the fictitious 
release of a low amount of radionuclides in an urban district where sensors are supposedly set up. Both the dispersion 
in the complex built-up environment and the radionuclides variously affecting the sensors make this configuration of 
particular interest as will be described in the paper. 
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INTRODUCTION 
Detection of weak signals in noisy data streams is a challenge in our societies’ current effort to prevent 
pollution risks of any type. The releases of hazardous compound into the air can have dramatic effects if an 
appropriate response comes too late. In this work, we present a solution to detect weak signals in noisy time 
series. Based on the Cumulative Sum (CUSUM) technique (Page, 1954) and its adaptation to multivariate 
cases (Mei et al. 2010) and (Watson et al. 2022), we propose to use the developed test statistics on a twin 
experimental release of a hazardous compound in an urban area. In the second section, we describe the 
principle of sequential detection, the CUSUM and its extension to multivariate cases. More precisely, we 
discuss on how we can adapt the method to deal with space-sparsity (only some sensors are monitoring the 
signal) and time-sparsity (sensors do not monitor the signal at the same time). In the third section, we 
present the experimental release that generated the data we use to test the detection techniques in the fourth 
section. 
 
SEQUENTIAL DETECTION 
 
In order to detect signal in a low signal to noise ratio case, it is sometimes impossible to tell the signal 
contribution based on one measurement. Sequential detection gathers the information about the signal 
contribution along time and make it possible to be detected. The CUSUM is a technique where a likelihood 



ratio is recursively computed with each measurement so that when a change occurs in the noise distribution, 
this likelihood ratio rises sample after sample and reaches a threshold that cannot be reached (ideally) if the 
measurements only contain noise. 
 
Let us consider a sensor which monitors a data stream  only withholding noise (following a distribution 
𝑓଴(𝑥௞ , 𝜃଴)) until the change-point 𝑘 = 𝜈 and then, after this change point, a signal added to the noise so the 
distribution becomes 𝑓ଵ(𝑥௞ , 𝜃ଵ), then the likelihood ratio to determine if a change has likely occurred at 
time 𝜈 is:  
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Because ν is unknown, it is necessary to generalize the likelihood ratio: 
 
   𝑉௡ = 𝑚𝑎𝑥
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Testing 𝑉௡ with an adapted threshold allows determining whether there is a signal in presence. It is possible 
to compute the generalized likelihood ratio sequentially (Tartakovsky et al., 2014): 
 
   𝑉௡ = 𝑚𝑎𝑥(1, 𝑉௡ିଵ)𝐿௡, 𝑛 ⩾ 1, 𝑉଴ = 1    (3) 
 
Univariate detection 
 
The CUSUM is obtained by using the log-likelihood instead of the likelihood in (3). This eases the 
computation especially for distributions from the exponential family. 
 
  𝑊௡ = 𝐿𝑜𝑔(𝑉௡) = 𝑚𝑎𝑥(0,𝑊௡ିଵ) + 𝑙𝑜𝑔(𝐿௡), 𝑛 ⩾ 1,𝑊଴ = 0   (4) 
 
The CUSUM can be used to detect any kind of change in the distribution of a data-stream but it is often a 
change in the mean or in the standard deviation that one seeks to find. In our application case, a change in 
the concentration of a radionuclide in the air is consistent with an increase in the monitored mean value. 
Figure 1 shows an example of how the CUSUM works on univariate data. 
 

 
Figure 1. Detection with CUSUM of a change in the signal mean with a low signal to noise ratio (SNR).  
The change in the mean occurs at the time marked 𝜈. On top, the evolution of the monitored variable 𝑥  

does not allow to detect directly the change in the mean. The CUSUM variable however changes its behaviour  
as the change-point has been passed and increases until it reaches the detection threshold. It is also possible  

to estimate the change-point 𝜈 from the last time 𝑊௡ crosses 0. 
 
Multivariate detection 
 
In the application we consider, many sensors are monitoring the area. The easiest way to associate the 
sensors is to construct the global test variable as the sum of all the local test variables. This technique is 
called SumCUSUM (Mei et al. 2010). Because the signal can be spatially sparse (only a few of the sensors 



monitor the signal), Mei et al. (2010) propose a censoring technique based on a rough knowledge of the 
signal energy establishing local thresholds. This would only sum the local variables where a signal is most 
likely present and increases the performances of the methods. Watson et al. (2022) propose a relative 
threshold technique so that the prior knowledge of the signal energy is no longer necessary. The global 
variable of this censored-SumCUSUM is defined as: 
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With: 
 
    𝑐௡ = 𝛼 𝑚𝑎𝑥
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The case of a time sparse problem has been considered in Watson et al (2022). Indeed, in the case of an 
event passing over a field of sensors, it is possible that the monitoring between the sensors is not 
synchronized. Bringing together these time limited exposures is possible while keeping online computation 
using the test variable presented hereafter: 
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Watson et al. (2022) show that it is equivalent to rewrite local variables such that  acts as the memory 
of the last highest value of : 
 
   𝐺௡ = 𝑚𝑎𝑥(𝐺௡ିଵ,𝑊௡) = 𝑚𝑎𝑥
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Thus, it is possible to simplify (7) so that: 
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These techniques can be combined in order to be used in both time and space-sparse problems: 
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TWIN EXPERIMENT OF AN INSIDIOUS RELEASE 
 
Having available data is of considerable importance if we want to test our method of finding signals with 
low signal-to-noise ratios. In our application, these data are the volumetric concentrations on sensors after 
the transport and dispersion of a release from a point source. One can naturally think of two types of data. 
The first type would correspond to the real situation of a release whose source goes unnoticed and which 
leads to sparse detections in space and time. Although this situation certainly exists, we do not have such 
data. The second type could be data acquired under full-scale experimental conditions or in a wind tunnel. 
Nevertheless, these data would be complicated and expensive to obtain because of the need to find an 
available site, devices to release the tracer and measure the signals, the workforce, etc. In the absence of a 
real dispersion situation available, we had the idea of considering a twin experiment, i.e. to generate 
synthetic signals from CFD computations. 
 
The Parallel Micro-SWIFT-SPRAY (PMSS) modelling system has been used to carry out the simulations. 
It is the parallel version of Micro-SWIFT-SPRAY (MSS) (Tinarelli et al. 2013) which was developed to 
provide a CFD solution of the flow and dispersion in the atmospheric environment in a limited amount of 
time. MSS is composed of the high-resolution local scale versions of the SWIFT and SPRAY models: 
 
  



 SWIFT is a 3D diagnostic mass-consistent model using a terrain-following coordinate. Large scale 
meteorological data, local meteorological measurements, and analytical results in building-modified flow 
areas are interpolated and adjusted to generate 3D wind fields. Other meteorological data such as temperature 
or humidity are also interpolated. Eventually, the turbulent flow parameters are computed by SWIFT to be 
used by SPRAY. 

 

 SPRAY is a Lagrangian particle dispersion model (LPDM) able to take into account the presence of obstacles. 
The dispersion of the release is simulated by following the trajectories of a large number of fictitious particles. 
Trajectories are obtained by integrating in time the particle velocity, which is the sum of a transport 
component defined by the local averaged wind generally provided by SWIFT, and a stochastic component, 
representing the dispersion due to atmospheric turbulence. 

 

Both SWIFT and SPRAY can handle complex terrains and changing meteorological conditions, as well as 
specific release features, such as heavy gases. More recently, SWIFT and SPRAY were parallelized across 
time, space, and numerical particles, resulting in the PMSS system (Oldrini et al. 2017). The parallelism 
was shown to be very efficient, both on a multi-core laptop and on clusters of several hundreds or thousands 
of cores in the case of a high-performance computing centre (Oldrini et al. 2019) (Armand et al. 2021). 
PMSS was systematically validated over numerous experimental wind tunnel and field campaigns for both 
short and long releases (Trini Castelli et al. 2018). In all configurations, the PMSS results comply with the 
statistical acceptance criteria defined by Hanna and Chang (2012) used for validating dispersion models in 
built-up environments. 
 

In the twin experiment, we used meteorological data produced by the AROME model of Météo France at 
a resolution of 0.025° (around 2.5 km at mid-latitude). Meso-scale weather predictions were downscaled 
with the PMSS modelling system in order to zoom in the central urban district south of Republic Square, 
in Paris (France). More precisely, the AROME meteorological profiles were extracted at the four closest 
points to PMSS simulation domain to nudge the flow simulations, also explicitly accounting for the whole 
buildings of the urban district. The 3D urban domain has dimensions of 1,100 m x 1,100 m x 1,600 m and 
551 x 551 x 34 grid nodes. The horizontal mesh size is 2 m. The vertical mesh size is 2 m up to 22 m and 
becomes looser going up to the top of the domain. Figure 2 shows the horizontal cross-section of the urban 
domain near the ground and the buildings. During the time sequence of the twin experiment, meteorological 
conditions varied, notably the wind speed and wind direction as indicated in Table 1, The fictitious source 
is denoted by the red dot in Figure 2. It was supposed to release an amount of 109 Bq of a radioactive tracer 
(gas or fine particles) at a height of 2 m for 20 minutes. Virtual sensors were also supposed to be set up at 
the same height as the source in the urban district. They are shown as blue dots in Figure 2. Dispersion 
simulations were carried out for 45 minutes. The results of these simulations are volumetric concentrations 
averaged over 1 minute and output each minute. They are used to test the detection techniques discussed in 
this paper. 

 
Figure 2. Horizontal cross section  

of the simulation domain showing the buildings  
of the urban district south of the Republic Square  

in Paris (France) and the positons of the fictitious source 
(red dot) and virtual sensors (blue dots).  

 
 

Table 1. Evolution of the wind speed and wind direction at 
10 m (AROME results not considering the effect  of the 
buildings) during the time sequence considered  for the 

PMSS simulation (t0 designates the instant  of the 
fictitious release). 

 

Time Wind speed Wind direction 

t0 2.6 287 

t0 + 9 min 0.95 327 

t0 + 18 min 1.05 5 

t0 + 27 min 1.8 17 

t0 + 36 min 1.0 28 

t0 + 45 min 1.9 25 



SEQUENTIAL DETECTION ON EXPERIMENTAL RELEASE 
 
In order to test the different detection techniques, we will consider a system with 25 sensors. Among these 
25 sensors the main proportion only holds noise where 0 to 10 data streams hold a signal. These signals 
have been randomly picked out of 12 different signals extracted from the twin experiment. In the following 
results, all the methods are tuned to have a probability of false alarm of 1 to 1,000 during the experiment. 
The noise on each data-stream is Gaussian and follows the rule 𝑁(0,1). Every detection rate value is 
evaluated with 10,000 runs with random noise generation and random sensors selection for each run.  
 

 
Figure 3. Detection rate depending on the number of affected sensors (left) and depending on the signal to noise ratio 

(right). The lower line in blue shows the results using a simple threshold solution on the data, the orange one  
the detection rate of the standard SumCUSUM, the green one the results taking into account the space sparsity,  

and the red one the results when both time and space sparsity are considered. 
 
Figure 3 (left) shows the detection rate of each method (except for the standard threshold method) with a 
constant signal to noise ratio and a variable proportion of affected sensors. The probability of detecting a 
signal computed empirically over the 10,000 runs increases with the number of sensors monitoring a signal. 
It is also notable that the consideration of space sparsity improves the results over the simple SumCUSUM. 
Of course, this improvement reduces if the number of sensors affected by the signal is close to the total 
number of sensors, but such a case is unlikely in the considered application. The consideration of both space 
and time sparsity gives the same results than considering only space sparsity because in this experiment, 
there is a lot of overlapping in the exposed sensors. 
 
Figure 3 (right) shows the detection rate of each method (except for the standard threshold method) with 
a constant number of impacted sensors and a variable signal to noise ratio. When the signal gain decreases, 
the consideration of the space sparsity shows a lesser degradation of the detection rate than the simple 
SumCUSUM. Again, the addition of the time sparse consideration changes quite nothing because of the 
data structure. 
 
When all signals are synchronized, the test variable considering time sparsity does not decrease the 
detection rate. This indicates that adding the sensitivity to time differential events does not conflict with the 
censoring technique. An experiment where sensors monitoring is not overlapping will be necessary to show 
this last technique interest. This could be the case for a more time-localized event traveling quicker in space. 
 
CONCLUSION 
 
In this work, we have shown the interest of using sequential detection technique to quickly identify the 
variation of a signal characterized by a low signal-to-noise ratio. This signal could be the concentration of 
a hazardous compound transported and dispersed into the air. Because these techniques can detect weak 
signals, they can be used as powerful prevention tools. We presented various techniques considering 
sparsity in space when not all the sensors monitor the signal but also sparsity in time when the sensors do 
not monitor the signal at the same time. The results on the experimental data presented here show how 
powerful these techniques are even though time sparsity was not present in the experiment we used. This 



time sparse technique has shown good results on simple synthetic data in Watson et al. (2022). It will need 
a different experimental data set to be proven worthy. Besides using these techniques on more complex data 
set, our future work will show its efficiency on different noise distributions such as Poisson, which is more 
realistic for some of the detectors used in the targeted applications. 
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