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Abstract: Long- and short-term exposure to PM2.5 is linked to adverse health impacts. Compared to other pollutants, 

PM2.5 is monitored at far fewer stations across the UK’s Automatic Urban Rural Network (AURN) hence models are 

widely used to simulate concentrations. A significant proportion of local PM2.5 may be attributed to regional sources, 

so an accurate estimation of that component is necessary to ensure that the model gets the ‘right results for the right 

reasons’. This study explores alternative methods of deriving background PM2.5 concentrations in Nottingham, UK, to 

represent the regional component in an atmospheric dispersion model (ADMS-Urban). A model variation employing 

hourly background concentrations from AURN stations located up to 200km upwind of the city performed best when 

verified against PM2.5 concentrations for two monitoring locations in the city. This study also uses alternative 

verification datasets to assess model performance in a data poor environment. This gives us confidence to apply ADMS-

Urban more widely across the city to assess associations between PM2.5 and human health. 
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INTRODUCTION 

 

Particulate matter with an aerodynamic diameter of ≤2.5μm (PM2.5) is associated with many health 

conditions including cardiovascular diseases, respiratory diseases and reduced cognitive function 

(Southerland et al., 2022). In spite of this, in the UK, PM2.5 is only measured at 79 of the 171 Automatic 

Urban and Rural Network (AURN) monitoring sites, which is far fewer than for other pollutants e.g. NO2, 

measured at 145 (Defra, 2022). The association between short-term peaks in PM2.5 and adverse health 

effects has been recognised, hence in the past there has been a focus on monitoring in ‘hot-spot’ areas, e.g. 

busy roads (Harrison et al., 2012). Research has also demonstrated the risks of long-term exposure to fine 

particles on human health, but monitoring has not increased based on this understanding (Southerland et 

al., 2022). This means there is heavy reliance on air quality models to predict PM2.5 concentrations over a 

city-wide scale for the purposes of decision making and human health assessments (Ortiz and Freidrich, 

2013). 

 

PM2.5 can be a primary pollutant, from exhaust emissions, tyre and brake wear, or emissions from industrial 

and household combustion. However, some studies have identified that a significant amount (41% - 72%) 

of PM2.5 in the UK is secondary, which is caused by chemical reactions in the atmosphere (Harrison et al., 

2012; Yin et al., 2010). PM2.5 can travel long distances in air masses, meaning long-range transport, 

particularly from mainland Europe, also contributes to the PM2.5 load in the UK (Graham et al., 2020). 

Rural AURNs provide an indication of transboundary PM2.5 contributions whilst urban AURNs reflect 

additional local contributions.  It is essential to get the background and local proportions accurate in local-

scale air quality modelling so that local sources can be targeted for management accordingly (Ortiz and 

Friedrich, 2013).  

 

This study explores methods for determining background concentrations of PM2.5 for use in an atmospheric 

dispersion model (ADMS-Urban 5.0) for local-scale PM2.5 modelling in Nottingham, using wind direction 

as a predictor for background concentration. Methods for overcoming hyperlocal source contributions for 

the purposes of model verification are also presented. 

 

 



Nottingham, UK 

 

In Nottingham, there is one urban background AURN station that measures both PM2.5 and PM10 (city 

centre), and one roadside station that measures PM10 only (Western Boulevard) (Figure 1a). In line with the 

objectives of the AURN, these were established to assess compliance with the Ambient Air Quality 

Directives and measure reduction of pollutants over time. Nottingham has an annual mean PM2.5 of 12 

µg/m3 of which 8 µg/m3 (67%) may be attributed to background sources  (Nottingham City Council, 2018).  

 

METHODOLOGY 

 

Determining a suitable background dataset for model input 

 

Four different approaches to estimating background concentrations of  PM2.5 were developed, based on data 

from one rural and several urban background AURN sites (Figure 1b). The year 2019 was used as this is 

the most recent year that was not affected by emission reductions due to the COVID-19 pandemic national 

lockdowns: 

1. Model 1: Used hourly background data from a rural AURN, Chilbolton Observatory (southern 

England). This site was chosen as it was the closest rural AURN site to Nottingham that measures hourly 

PM2.5 concentrations. 

2. Model 2: The Chilbolton AURN values were scaled using average annual background values in rural 

areas outside of the Nottingham conurbation generated by the Pollution Climate Mapping (PCM) model 

(Defra, 2019). A single annual value was applied to uplift all hourly values from the Chilbolton AURN 

so they were more reflective of the PM2.5 background climate in Nottingham (Zhong et al., 2021).  

3. Model 3: Hourly background data were taken from other urban background AURNs within 200km 

of Nottingham using wind direction as a predictor for background concentrations.  Model 3 selected 

stations based on 8 x 45° sectors upwind of Nottingham.   

4. Model 4: Takes the same approach as Model 3 but selects stations based on 12 x 30° sectors upwind 

of Nottingham.  

 

Figure 1a: Nottingham AURN sites. Figure 1b: Background AURN locations used in models. 

 

 



Model verification 

 

Both AURN sites in Nottingham were used to verify PM2.5 models (Figure 1a). Analysis of the city centre 

site prior to verification revealed a hyperlocal source of PM2.5, which was a mobile hot food stall not 

representative of the wider PM2.5 climate in Nottingham. Correspondence with the Local Authority revealed 

that the food outlet started operating in 2015. The lunchtime peaks present a very different temporal 

signature from expected local sources, such as nearby roads, that typically follow a diurnal pattern of the 

morning and evening rush-hours (Kendrick et al., 2015) (Figure 2). For the purposes of model verification, 

data during periods whilst the hot food stall was operating were removed from the verification dataset. 

 

 
Figure 2: Time variation of PM2.5 at the city centre AURN, pre (2008-2014) and post operation (2015-2019) of the 

hot food stall. 

 

PM2.5 was estimated at Western Boulevard (Figure 1a) by applying a PM2.5:PM10 ratio from the city centre 

site once the influence of the hot food stall was removed from the dataset. This ratio was calculated for 

hourly concentrations of PM10 and PM2.5 and averaged for the year, giving a value of 0.58. Hourly 

concentrations of the model outputs were verified against recorded hourly PM2.5 concentrations at city 

centre, and hourly estimated PM2.5 concentrations at Western Boulevard.  

 

Model performance for PM2.5 was tested using fraction of predictions within a factor of two (FAC2), mean 

bias (MB), mean gross error (MGE), normalised mean bias (NMB), correlation coefficient (r), and index 

of agreement (IOA). 

 

RESULTS 

 

Model 3 performed best for FAC2, MGE, r and IOA at both the city centre and Western Boulevard sites 

(Table 1). The city centre site has fewer data points for PM2.5 than Western Boulevard due to the removal 

of hours influenced by the hot food stall.  
 

 



Table 1: Model statistics of model performance for PM2.5 at city centre and Western Boulevard AURN sites (hourly 

data). n is the number of hourly data points tested in the analysis. 

 

Model n FAC2 MB MGE NMB r IOA 

City Centre 

Model 1 6676 0.77 0.46 4.70 0.04 0.70 0.65 

Model 2 6676 0.70 3.43 5.97 0.32 0.70 0.56 

Model 3 6676 0.81 2.05 4.24 0.19 0.80 0.68 

Model 4 6676 0.60 5.62 7.28 0.53 0.69 0.46 

        

Western Boulevard 

Model 1 8481 0.81 -0.54 4.60 -0.05 0.63 0.61 

Model 2 8481 0.78 2.35 5.72 0.20 0.62 0.51 

Model 3 8481 0.86 1.03 4.27 0.09 0.72 0.64 

Model 4 8481 0.72 4.74 6.60 0.41 0.64 0.44 

 

DISCUSSION AND CONCLUSIONS 

 

This study used four different datasets to represent background PM2.5 concentrations in ADMS-Urban.  

Model 3, applying urban background AURNs in eight 45° wind sectors using wind direction as a predictor 

for PM2.5 concentration performed most strongly across a range of test statistics at the two verification sites 

in the city, including FAC2 - a model is considered as acceptable when more than half of the model 

predictions lie within a factor of two (Derwent et al., 2010). MB and MGE provide useful measures of 

model over- and under-estimation.  Model 1 performed best for MB.  Over-estimation in Model 3 may be 

attributed to local contributions from other urban AURN sites included within the background data input 

for Nottingham (Derwent et al., 2010). Model 3 performed best for MGE at both sites. NMB is a measure 

of relative difference between modelled and observed concentrations.  Model 1 performs best in this metric, 

however Model 3 is within the accepted range of -0.2 and +0.2 for both sites, whilst Models 2 and 4 are not 

(Derwent et al., 2010). There is good overall agreement for modelled and observed concentrations (r = 0.80, 

city centre and r = 0.72, Western Boulevard) for Model 3, which performed the best in this metric out of 

the four models. Model performance is slightly poorer at the Western Boulevard site than the city centre.  

There could be two explanations for this:  First, modelled concentrations at Western Boulevard are 

compared to concentrations based on a predicted PM2.5: PM10 ratio; second, there are fewer observations at 

the city centre site, meaning that r may appear stronger due to a smaller number of pairings (Derwent et al., 

2010). Lastly, IOA is a good indicator for overall model performance, Model 3 performed the best out of 

the four models in this metric for both sites, giving confidence to apply this model across the city to assess 

relationships with health outcomes (Willmott et al., 2012). 

 

Annual mean modelled concentrations are typically used to assess relationships between health and air 

pollution across city scales (Huang et al., 2017).  However, models can also be used to simulate air pollution 

episodes, which are known to link to acute adverse health impacts (Bell et al., 2013). These typically occur 

at regional scales, dominated by background PM2.5 from mainland Europe and other conurbations in the 

UK, with local emissions ‘topping-up’ concentrations, resulting in higher-than-average PM2.5 

concentrations and more extreme exceedances of air quality thresholds (Graham et al., 2020).  The method 

used to generate background datasets for Models 1 and 2 supports the prediction of annual mean 

concentrations, but not episodes.  In contrast, the method used to generate background datasets for Model 

3 can be used to predict both annual mean and episode-specific concentrations so can be used in assessments 

of chronic and acute health impacts. 

 

Verifying model performance is challenging in Nottingham. There is one site in the city centre that 

measures PM2.5 which is unlikely to be representative for a population of >300,000 residents. The city 

centre site is also influenced by a hyperlocal source, not reflective of general conditions across Nottingham, 

limiting the observations available for model verification. From a wider policy perspective, the influence 

of hyperlocal sources on monitoring stations may affect the reporting required in accordance with Air 

Quality Directives. Hyperlocal sources may obscure general reductions in PM2.5 due to national and local 

emission reduction interventions (Figure 2). This confirms the need to carry out rigorous assessment of 

monitoring data prior to use in model verification. Provision of robust statutory guidance for requirements 



of siting potential sources, for example, mobile hot food outlets, near to air quality monitoring stations is 

needed to prevent this issue.  

 

It is difficult to assess the impacts of air pollution from monitoring alone, hence the importance of using a 

modelling approach to achieve better spatial representation (Conti et al., 2017).  Through careful scrutiny 

of pollutant measurements and assessment of background concentrations it is possible to generate modelled 

PM2.5 concentrations at spatial and temporal scales consistent with available health outcome data to make 

a more rigorous assessment of associations between air pollution and human health. 
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