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Abstract: We present a new methodology to estimate multiple source parameters in the framework of
Bayesian Inference. In the Bayesian inference technique, the estimation problem is modeled as the
determination of the full conditional probability density of the unknown parameters. In turn, the full
conditionals are the product of the likelihood function, which relates observed and model-predicted
concentrations and a prior density for the unknowns. The full conditionals for the unknown source
parameters are not usually easily sampled. Thus, the estimation technique presented in this work combines
a Metropolis-Hastings step for those unknowns that cannot be sampled directly with a Gibbs step for those
sampled directly from its full conditionals. The proposed algorithm estimates the cartesian source
coordinates, the source strength, the number of emissions, the precision of the observational data, and the
constant in the Lasso prior distribution. In addition, we proposed a Bayesian dynamic linear model (DLM)
to obtain high-frequency average wind data. In this model, we obtain the joint modeling of the wind
intensity and direction. We evaluate the algorithm with the multiple tracer releases field experiment FFT07.
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INTRODUCTION

Atmospheric pollution is a considerable environmental concern since it strongly affects the population's
quality of health and influences the ongoing climate change. In many situations, it is necessary to investigate
the geographical localization and magnitude of atmospheric pollutants emissions to decide, possibly based
on simulations of a dispersion model, which regions will be affected by their damaging effects, allowing
the establishment of emergency measurements.

The methodologies to identify the source parameters via inverse problem modelling require a systematic
procedure, which involves some coupled steps, such as the definition of a forward problem or dispersion
model, usually an advection-diffusion partial differential equation (PDE). The dispersion model
incorporates all the relevant physical processes involved in the case under investigation. The closer the
forward problem is in describing such a situation, the better the results of the inverse problem will become.
Also, the methodology to solve the forward problem strongly impacts the solution of the dispersion model
and, consequently, the accuracy of the source parameters estimation.

In this work, we present a contribution to improving the forward model, more precisely in the pollutant
transport by the wind, using a Bayesian Dynamic Linear Model (DLM) to obtain time-dependent wind
intensity and direction. Such a model allows us to introduce the local wind changes in the dispersion model,
potentially improving their accuracy. A customary procedure in source identification modelling is to
substitute the advection-diffusion PDE with its adjoint one. It allows the forward model to be solved only
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once for all the iterations of the inverse problem. This strategy considerably reduces the computations of
the source identification algorithm, enabling faster responses. The adjoint state dispersion model is solved
using the finite element formulation from (Do Carmo and Galedo, 1991) suitable to solve transient
advection-diffusion PDEs. Finally, the source parameters are estimated using a Metropolis in Gibbs Monte
Carlo Markov chain (MCMC) algorithm to obtain simultaneously the source parameters, the uncertainty in
the data, and the parameters in the prior distributions.

In comparison with the previous work, Albani et al. (2021), there are considerable improvements. The
dispersion model is now transient and considered a more realistic wind field. The proposed inversion
technique is more robust since it appropriately addresses the weight of the prior densities in the estimation.

Description of the case of study

The proposed methodology to estimate simultaneously the source parameters and the number of sources is
simulated and evaluated against the case 55 of the multiple emission tracer experiment FUSION Field Trial
2007 (FFT-07) (Storwald, 2007). During Trial 55, the tracer gas polypropylene (C3H6) was released
continuously for 10 minutes at a constant emission rate from four-point sources and then sampled over an
array of 100 sensors. The sensors were arranged considering a distance of 50 m from each other, over a
sampling grid of 450 x 475 m and 2 m above the ground level. The C3H6 concentrations were sampled
over about 15 minutes. High frequency 10Hz three-dimensional sonic anemometers were displayed on three
32-m lattice towers. In this work, we used the meteorological datasets measured in the centre of the grid of
sensors.

The towers were equipped with five three-dimensional sonic anemometers at levels 2, 4, 8, 16, and 32 m.
The sonic anemometer measured the three wind speed components $u,v, w$, in m/s, and the air temperature,
in K. Although the meteorological dataset's time-series length is 50 minutes, just 14 minutes were applied
to consider the concentration sampling period. As the concentration gas sampler units were arranged at 2
m above the ground level, we used only the zonal and meridional wind components data records measured
at this same height. The arrangements of the concentration sampling units and emission sources are depicted
in Fig. 1.

METHODOLOGY

The proposed methodology to identify multiple atmospheric releases is based on three main steps: the
development of a Bayesian dynamic linear model (DLM) to forecast high frequency average wind data,
considering Trial 55 of the FFT07 experiment. This model simultaneously takes into account the wind
intensity and direction through the joint modelling of the zonal (u) and meridional (y) wind
components.This model is partially based on in Garcia et al. (2020). This wind field is one of the input data
to the dispersion model. Considering the flat terrain topography, the turbulent diffusion coefficient in the
vertical direction is described according to the Monin-Obukhov similarity theory. An usual procedure to
solve source estimation problems is to change the advection-diffusion PDE by its adjoint one. Such a
strategy considerably reduces the simulation's burden to solve the inverse problem, since in this case, the
adjoint PDE needs to be solve only once, for all the iterations of the inverse problem. We avoid a detailed
description of the forward problem modelling procedure for the sake of space, but it can be found, e.g. in a
forthcome work and in Albani and Albani. (2019). The resulting adjoint-state PDE for the dispersion model
was numerically solved using the finite element formulation proposed by Do Carmo and Galedo (1991).
We briefly describe the technique used to estimate the source parameters. Let C°PS denote the vector
containing » values of observed concentrations of C3H6 at different sensors and time instants. The pollutant
was emitted from a set of unknown sources. We aim to find the sources locations and their respectives
emission rates. Assume, for simplicity, that the number S is fixed. Then, the vector containing the location
(x5, Vs, Z5) and strength (Q;) of the sth source, for s = 1,--+, S, is defined as w,; = [x, ¥s, Z5, @;]. We can
parameterize all the sources with respect to a given one. Thus, for s = 2,--+, S, we can write w, = w; +
v,. The aim is to reduce the set where the unknowns are defined, simplifying the inverse problem solution.
More precisely, we let the entries of w; to vary in the whole computational domain, whereas v varies in a
much more restricted set. In other words, we are assuming that all the sources are close to each other.
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The estimation is made by a Bayesian technique (Gamerman and Lopes, 2006). Thus, we setup prior
densities for the unknowns and likelihood functions linking unknown to observed concentrations to build
full conditional probability densities. As we shall see, some of such full conditionals will be sampled by
the Metropolis in Gibbs Markov chain Monte Carlo algorithm (MCMC) (Albani et al., 2021). It combines
a Metropolis-Hastings step for those unknowns that cannot be directly sampled with a Gibbs step for those
that are sampled directly from its full conditional.
The first source has a uniform prior, i.e., w; has uniform distribution in the set
An = [xmin'xmax] X [Ymin' ymax] X [Zmin' Zmax] X [Qmin' Qmax]'
The xy-part of this set is defined based on the wind mean direction during the data collection and the
concentration distribution in the domain given by the isopleth in Figure 2. The zQ-part of the set is the same
used to solve the dispersion problem numerically.
Fors = 2,--+, S, v, has a Lasso prior truncated in the computational domain, with
P(Vsla) & EXp(—Of”Vs”gl)-
For simplicity, we use the same a for all s = 2,---,S. The scalar « is also unknown and has the prior
distribution Gamma(1/3,1/3). As the concentration observation is uncertain, we assume a log-normal
distribution for the noise, which means that, the relationship between observed and numerically calulated
concentrations are given as follows, fori = 1,...,n,
€ = Cy(wy, v, -+, Vs)exp(e),
where ¢ is the noise and have Gaussian distribution with mean zero and variance 1/p, with p called
precision. Therefore, the likelihood function of wy, --+, wg is the following

P(C%|p, wy, v, -, v5) pgexp (—p”log(c"bs) —log(C(wy, v, "',VS))”;).
The quantity p is unknown and have the prior distribution Gamma(1/3,1/3).
The full conditionals are the following,

P(wy, v, -, vs|p, a, CObS) X P(CObslp: Wy, V, o, Vg)P(W) P (v, | @) -+ P(vs|a),

P(plwlﬂ vz, Vs, CObS) & P(CObslp' Wy, Voo 'VS)P(p)'
P(alvy, -+, vs) « P(vy|a) - P(vs|a)P(a),

Where P(w;,), P(p), and P(a) denote the prior densities for the unknowns wy, p, and a.
The full conditional for p and a can be approximated, as mentioned above by the distributions

Gamma(a, b) and Gamma(c, d), respectively, where

1 n 1 2
a= 2 + 5, b= § + ||]0g(cobs) —log(C(wy, vy -+ ’VS))llfz'

1 1 <
c=z+ (-9, d=§+zlnvs||h-
s=

In the MCMC algorithm, the sampling of p and @ can be performed directly from the full conditionals,
leading to Gibbs steps. Samples for w;, v, -+, v will be approximated by a Metropolis-Hastings step.

Numerical results
In this section, we present numerical experiments using the Metropolis in Gibbs algorithm applied to the
FFTO07 dataset. The xy-components of the set 4, are defined based on the 15 minutes average concentration
distribution in the xy-plane provided by the isopleth in Fig. 1 (right), the distribution of the sensors in the
xy-plane in Fig. 1 (left), and the 15 minutes average wind direction, also in the xy-plane indicated by the
arrow in Fig. 1 (left). The resulting region in xy-plane is indicated by the rectangle in Fig. 1 (left). The zQ-
components are the same used to solve the forward problem. Thus, the prior density of 7 is the uniform
distribution defined in the set

A, = [-100,100] x [50,600] x [0,50] x [0,30],
with the spatial parameters defined in meters and the source strengths defined in g/s. Notice that, the actual
locations of the sources are inside A, as the crosses in the left panel of Fig. 1 show.

511



The Markov Chain generated by the MCMC algorithm in Algorithm 1 has 100 thousand states, with a burn-
in set of 20 thousand states. From the remaining 80 thousand states, we select 4000 using a step-size of 20
states. Table 1 compares the true source parameters with the summary statistics of the chains generated by
the MCMC algorithm. For comparison, we included the parameters estimated in Albani et al. (2020). It also
presents the relative error of the estimations obtained by the MCMC algorithm and in Albani et al. (2020).
In Albani et al. (2020), the source parameters were estimated from the same set of experimental data using
Tikhonov-type regularization, where the objective functional was minimized using different techniques,
including the combination of the genetic algorithm with a gradient descent method (GA+GD) and a
combination of particle swarm optimization with GD (PSO+GD). The convergence of the chains was tested
using the Gelman Rubin test (Gelman and Rubin, 1992), where the value 1.00 indicates that the chains
converged. The relative error is evaluated as follows,

ITRUE VALUE — ESTIMATED VALUE|

RELATIVE ERROR = 100 TRUE VALUE

representing a percentage of the true value of the parameter of interest. The minimum and maximum relative
errors for the samples on each chain were evaluated and also presented in Table 1. The average relative
error for the estimated values using the MCMC algorithm and the techniques from Albani et al. (2020) were
also presented. Table 1 also presents the summary statistics for the precision p, and the parameter of the
Lasso prior a.

By comparing relative errors and their average values it follows that the results obtained by the MCMC
algorithm were slightly more accurate than those from Albani et al. (2020). The computational time to
generate the Markov chains was similar to the time to perform the estimation procedure in Albani et al.
(2020). Moreover, the estimations using the MCMC algorithm were obtained from 100 concentration
values from 10 different sensors, whereas the estimation in Albani et al. (2020) considered the average of
the concentration values from 50 sensors. This means that the proposed inversion tool used the available
data more efficiently by considering a transient dispersion model. In addition, the present technique
estimates the uncertainty in the data and sets appropriately the weight of the prior distributions
simultaneously to the estimation of the source parameters, which improves its accuracy and performance
in comparison to the techniques presented in Albani et al. (2020). There, a Morozov-type discrepancy
principle (Albani and De Cezaro, 2019) was used to appropriately find the regularization parameter.

The potential stabilization of the Markov chains is illustrated by the histograms in Fig. 3 and values equal
to 1.00 in the Gelman-Rubin test presented in Tab. 1. It is worth mentioning that, although the overall
accuracy of the estimations was slightly better than in previous works, in some cases, the regions defined
by the Markov chains failed to contain the true values of source parameters. Since the problem under
consideration is highly ill-posed and the data is rather noisy, such behavior can be expected.
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Figure 1: Left: Distribution of the sensors in the xy-plane of the computational domain. The arrow indicates the wind
direction. The cross represents the position of the tower used to measure the wind speed and direction. The sensors
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used in the simulations are the filled circles. The rectangle is the xy-part of the set 4, defining the uniform prior of 7.
Right: Isopleth showing the average concentration distribution for the trial 55 of the FFT07 in the computational
domain. The diamonds represent the actual locations of the sources.

| MCMC Summary Results Results from Albani et al. (2020)
Param. | True | Min. QI Median Q3 Max. GR Error GA+GD | Error | PSO+GD | Error
Test (Min-
Max)
x; [m] | 33,0 - - -6.80 - -1.53  1.00 121 33.6 1.73 28.7 13.1
12.1 747 6.11 (105—
137)
v, [m] 171 | 216 225 228 232 249  1.00 333 171 0.26 172 0.59
(26.2—
45.5)
zy[m] | 2,00 | 0.50 0.84 1.02 1.18 228 1.00 49.2 2.32 16.0 0.01 100
(0.00—
75.1)
Q. [g/s] | 11,4 | 8.60 933 944 955 10.1 1.00 17.1 10.8 5.18 7.46 345
11.1-
24.5)
- - -0.01 065 470 1.00 100 8.51 74.8 283 16.3
507 0.67 (86.1-
115)
vy, [m] | 241 | 287 298 300 302 313 1.00 24.6 245 1.87 240 0.36
(19.1-
30.1)
zy[m] | 2.00 | 0.01 032 050 0.66 177 1.00 752 1.69 15.5 2.04 2.00
(11.3-
99.4)
Q,[g/s] | 1141 926 9.90 10.0 10.1 106 1.00 122 3.65 68.0 4.44 61.0
(7.18-
18.7)
x5 [m] | 30,0 - - -23.7 - -18.6  1.00 179 64.0 113 200 567
289 244 23.0 (162—
196)
yz[m] | 313 | 955 105 108 112 129  1.00 65.4 305 2.66 124 60.4
(58.9-
69.5)
zz[m] | 2.00 | 1.14 148 1.66 1.82 292 1.00 17.2 8.69 335 1.46 27.0
(0.00—
46.0)
Qs[g/s] | 465 | 489 554 565 575 633  1.00 214 10.1 116 0.01 100
(5.15-
36.1)
- 268 334 403 7.65 1.00 87.1 575 121 -5.27 120
1.89 (70.6—
107)
v [m] | 384 | 407 424 428 431 438 1.00 113 360 6.24 372 3.17
(5.77-
14.1)
z4[m] | 2.00 | 0.52 0.87 1.05 122 231 100 | 47.5(0- 11.3 465 6.51 226
74.0)
Qulg/s] | 11.4] 895 9.64 975 985 104 1.00 14.4 245 115 11.6 2.19
(8.75—
21.4)
Average 55 (36— 91 83
69)

x,[m] | 338

x,[m] | 26,0

p - 0.06 0.10 0.11 0.12 910 1.00

a - 188 893 1213 1594 4506 1.00

Table 1: Comparison between the True source parameter values (True), the summary of the MCMC results, and the
parameters estimated in Albani et al. (2020). For the MCMC results, we have the minimum value (Min.), the first
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quartile (Q1), the median value (Median), the third quartile (Q3), the maximum value (Max.) and the value of the
Gelman-Rubin convergence test (GR Test). The percentage error is the relative error multiplied by 100. It is
evaluated with respect to the median value and the maximum and minimum possible error values considered in the
samples (Min-Max). The relative error for the parameters estimated in Albani et al. (2020). GA+GD stands for the
combination of the genetic algorithm with gradient descent (GD) and PSO+GD the combination of particle swarm
optimization with GD. The row average presents the average of the relative errors.

CONCLUSION

The proposed methodology presented median values that were at least as accurate as previous approaches
that used sofisticated inverse modeling techniques. This means that the presente estimation procedure that
uses a more accurate dispersion model can present a better performence. However, in many cases, the
credibility regions provided by the Markov chains failed include the true source parameters. This issue shall
be addressed in future research by improving the MCMC algorithm and by including additional
concentration data from other sensors in the computational domain.
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